Krishna, R., & van Baten, J. M. (2025). Elucidating the failure of the Ideal Adsorbed Solution Theory for CO 2 /H 2 O mixture adsorption in CALF-20. Separation and Purification Technology, 352. https://doi.org/10.1016/j.seppur.2024.128269
Krishna, R., & van Baten, J. M. (2025). How reliable is the Real Adsorbed Solution Theory (RAST) for estimating ternary mixture equilibrium in microporous host materials? Fluid Phase Equilibria, 589. https://doi.org/10.1016/j.fluid.2024.114260
Krishna, R., & van Baten, J. M. (2025). Non-Idealities in adsorption thermodynamics for CO2 capture from humid natural gas using CALF-20. Separation and Purification Technology, 355(A). https://doi.org/10.1016/j.seppur.2024.129553
Zou, S., Chen, C., Di, Z., Liu, Y., Li, H., Li, Y., Krishna, R., Yuan, D., & Wu, M. (2025). Stepwise customizing pore environments of C2H2-selective frameworks for one-step C2H4 acquisition from ternary mixtures. Separation and Purification Technology, 354(7). https://doi.org/10.1016/j.seppur.2024.129358
2024
Chen, Y., Jiang, Y., Li, J., Hong, X., Ni, H., Wang, L., Ma, N., Tong, M., Krishna, R., & Zhang, Y. (2024). Optimizing the cask effect in multicomponent natural gas purification to provide high methane productivity. AIChE Journal, 70(3), Article e18320. https://doi.org/10.1002/aic.18320[details]
Chen, Y., Wu, Z., Fan, L., Krishna, R., Huang, H., Wang, Y., Xiong, Q., Li, J., & Li, L. (2024). Direct Ethylene Purification from Cracking Gas via a Metal-Organic Framework Through Pore Geometry Fitting. ENGINEERING, 41, 84-92. https://doi.org/10.1016/j.eng.2024.01.024
Di, Z., Ji, Z., Chen, C., Krishna, R., Yuan, D., Hong, M., & Wu, M. (2024). Efficient separation of methanol-to-olefins products using a metal-organic framework with supramolecular binding sites. Chemical engineering journal, 493, Article 152442. https://doi.org/10.1016/j.cej.2024.152442[details]
Guo, X.-Z., Lin, B., Xiong, G.-Z., Krishna, R., Zhang, Z.-R., Liu, Q.-Z., Zhang, Z.-X., Fan, L., Zhang, J., & Li, B. (2024). Construction of negative electrostatic sugared gourd pore within nickel-based metal-organic framework for one-step purification acetylene from ethylene and carbon dioxide mixture. Chemical engineering journal, 498. https://doi.org/10.1016/j.cej.2024.154734
Ji, Z., Li, Q., Zhou, Y., Krishna, R., Hong, M., & Wu, M. (2024). Synergistic C2H2 Binding Sites in Hydrogen-Bonded Supramolecular Framework for One-Step C2H4 Purification from Ternary C2 Mixture. Angewandte Chemie, International Edition, 63(46). https://doi.org/10.1002/anie.202411175
Ji, Z., Li, Q., Zhou, Y., Krishna, R., Hong, M., & Wu, M. (2024). Synergistic C2H2 Binding Sites in Hydrogen-Bonded Supramolecular Framework for One-Step C2H4 Purification from Ternary C2 Mixture. Angewandte Chemie, 136(46). https://doi.org/10.1002/ange.202411175
Jiang, Y., Wang, L., Hu, J., Krishna, R., Chen, B., & Zhang, Y. (2024). Specific Propyne Trapping Sites within a Robust MOF for Efficient Propyne/Propadiene Separation with Record Propadiene Productivity. Advanced materials, 36(11), Article e2311140. https://doi.org/10.1002/ADMA.202311140[details]
Krishna, R., & van Baten, J. M. (2024). Fundamental insights into the variety of factors that influence water/alcohol membrane permeation selectivity. Journal of Membrane Science, 698, Article 122635. https://doi.org/10.1016/j.memsci.2024.122635[details]
Liu, S., Huang, Y., Wan, J., Zheng, J.-J., Krishna, R., Li, Y., Ge, K., Tang, J., & Duan, J. (2024). Fine-regulation of gradient gate-opening in nanoporous crystals for sieving separation of ternary C3 hydrocarbons. Chemical Science, 15(17), 6583-6588. https://doi.org/10.1039/d3sc05489f[details]
Peng, X., Zhao, L., Peng, Y.-L., Deng, C., Andaloussi, Y. H., Pan, H., Tian, Y.-J., Zou, J.-S., Krishna, R., Liu, B., Deng, C., Xiao, P., Sun, C., Zaworotko, M. J., Chen, G., & Zhang, Z. (2024). One-Step Ethylene Purification from a Seven-Component Cracking Gas Mixture with Sorbent-Sorbate Induced-Fit. CCS Chemistry. https://doi.org/10.31635/ccschem.024.202403977
Wang, G. .-D., Li, Y.-Z., Krishna, R., Yan, Z.-Z., Hou, L., Wang, Y.-Y., & Zhu, Z. (2024). Fine-tuning the pore environment of isoreticular metal-organic frameworks through installing functional sites for boosting C2H6/C2H4 separation. Chemical engineering journal, 485. https://doi.org/10.1016/j.cej.2024.149587
Wang, G.-D., Li, Y.-Z., Krishna, R., Zhang, W.-Y., Hou, L., Wang, Y.-Y., & Zhu, Z. (2024). Scalable Synthesis of Robust MOF for Challenging Ethylene Purification and Propylene Recovery with Record Productivity. Angewandte Chemie, International Edition, 63(15). https://doi.org/10.1002/anie.202319978
Wang, G.-D., Li, Y.-Z., Krishna, R., Zhang, W.-Y., Hou, L., Wang, Y.-Y., & Zhu, Z. (2024). Scalable Synthesis of Robust MOF for Challenging Ethylene Purification and Propylene Recovery with Record Productivity. Angewandte Chemie, 136(15). https://doi.org/10.1002/ange.202319978
Wang, L., Zhang, Y., Zhang, P., Liu, X., Xiong, H., Krishna, R., Liu, J., Shuai, H., Wang, P., Zhou, Z., Chen, J., Chen, S., Deng, S., & Wang, J. (2024). Electro-field alignment in a novel metal–organic framework for benchmark separation of ethylene from a ternary gas mixture. AIChE Journal, 70(5), Article e18396. https://doi.org/10.1002/aic.18396[details]
Yang, S.-Q., Krishna, R., Zhou, L., Li, Y.-L., Xing, B., Zhang, Q., Zhang, F.-Y., & Hu, T.-L. (2024). A thermostable calcium-based metal-organic framework for efficient capture and separation of acetylene from ternary mixture. Separation and Purification Technology, 329. https://doi.org/10.1016/j.seppur.2023.125167
Zhou, J., Han, X., Ke, T., van Baten, J. M., Bao, Z., Zhang, Z., Krishna, R., Ren, Q., & Yang, Q. (2024). Engineering pore limiting diameter of metal-organic frameworks for benchmark separation of mono- and di-branched hexane isomers. Chemical engineering journal, 488. https://doi.org/10.1016/j.cej.2024.150833
Zhou, X., Song, Z., Krishna, R., Shi, L., Zhang, K., & Wang, D. (2024). Three Polyhedron-Based Metal-Organic Frameworks Exhibiting Excellent Acetylene Selective Adsorption. ACS Applied Materials and Interfaces, 16(31), 41542-41550. https://doi.org/10.1021/acsami.4c09066
Zhou, Y., Chen, C., Ji, Z., Krishna, R., Di, Z., Yuan, D., & Wu, M. (2024). A Layered Hydrogen-Bonded Organic Framework with C3H6-Preferred Pores for Efficient One-Step Purification of Methanol-to-Olefins (MTO) Products. ACS Materials Letters, 6(4), 1388-1395. https://doi.org/10.1021/acsmaterialslett.4c00111[details]
Chand Pal, S., Krishna, R., & Das, M. C. (2023). Highly scalable acid-base resistant Cu-Prussian blue metal-organic framework for C2H2/C2H4, biogas, and flue gas separations. Chemical engineering journal, 460, Article 141795. https://doi.org/10.1016/j.cej.2023.141795[details]
Duan, H.-Y., Li, X.-Y., Krishna, R., & He, C. (2023). Ultramicroporous Metal-Organic Framework with Inert Pore Surfaces for Inversed Separation of Ethylene from C2 Hydrocarbons Mixtures. ACS Applied Materials and Interfaces, 15(19), 23538-23545. https://doi.org/10.1021/acsami.3c04225[details]
Duan, H.-Y., Li, X.-Y., Krishna, R. & He, C. (2023). CCDC 2233223: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dyvgp
Gao, M.-Y., Bezrukov, A. A., Song, B.-Q., He, M., Nikkhah, S. J., Wang, S.-Q., Kumar, N., Darwish, S., Sensharma, D., Deng, C., Li, J., Liu, L., Krishna, R., Vandichel, M., Yang, S., & Zaworotko, M. J. (2023). Highly Productive C3H4/C3H6 Trace Separation by a Packing Polymorph of a Layered Hybrid Ultramicroporous Material. Journal of the American Chemical Society, 145(21), 11837-11845. https://doi.org/10.1021/jacs.3c03505[details]
Gao, M.-Y., Bezrukov, A. A., Song, B.-Q., He, M., Nikkhah, S., Wang, S.-Q., Kumar, N., Darwish, S., Sensharma, D., Deng, C., Li, J., Liu, L., Krishna, R., Vandichel, M., Yang, S. & Zaworotko, M. J. (2023). CCDC 2154469: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2b9x0l
Gao, M.-Y., Bezrukov, A. A., Song, B.-Q., He, M., Nikkhah, S., Wang, S.-Q., Kumar, N., Darwish, S., Sensharma, D., Deng, C., Li, J., Liu, L., Krishna, R., Vandichel, M., Yang, S. & Zaworotko, M. J. (2023). CCDC 2154470: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2b9x1m
Gao, M.-Y., Bezrukov, A. A., Song, B.-Q., He, M., Nikkhah, S., Wang, S.-Q., Kumar, N., Darwish, S., Sensharma, D., Deng, C., Li, J., Liu, L., Krishna, R., Vandichel, M., Yang, S. & Zaworotko, M. J. (2023). CCDC 2154471: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2b9x2n
Gao, M.-Y., Bezrukov, A. A., Song, B.-Q., He, M., Nikkhah, S., Wang, S.-Q., Kumar, N., Darwish, S., Sensharma, D., Deng, C., Li, J., Liu, L., Krishna, R., Vandichel, M., Yang, S. & Zaworotko, M. J. (2023). CCDC 2154472: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2b9x3p
Gao, M.-Y., Bezrukov, A. A., Song, B.-Q., He, M., Nikkhah, S., Wang, S.-Q., Kumar, N., Darwish, S., Sensharma, D., Deng, C., Li, J., Liu, L., Krishna, R., Vandichel, M., Yang, S. & Zaworotko, M. J. (2023). CCDC 2154473: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2b9x4q
Gao, M.-Y., Bezrukov, A. A., Song, B.-Q., He, M., Nikkhah, S., Wang, S.-Q., Kumar, N., Darwish, S., Sensharma, D., Deng, C., Li, J., Liu, L., Krishna, R., Vandichel, M., Yang, S. & Zaworotko, M. J. (2023). CCDC 1973753: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc247vgq
Gu, S., Yu, Z., Li, N., Zhang, Q., Zhang, H., Zhang, L., Gong, L., Krishna, R., & Luo, F. (2023). Structural flexibility in cationic metal–organic framework for boosting ReO4− capture. Chemical engineering journal, 466, Article 143139. https://doi.org/10.1016/j.cej.2023.143139[details]
Gu, S., Yu, Z., Li, N., Zhang, Q., Zhang, H., Zhang, L., Gong, L., Krishna, R. & Luo, F. (2023). CCDC 2201226: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cwk94
Gu, S., Yu, Z., Li, N., Zhang, Q., Zhang, H., Zhang, L., Gong, L., Krishna, R. & Luo, F. (2023). CCDC 2201227: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cwkb5
Gu, S., Yu, Z., Li, N., Zhang, Q., Zhang, H., Zhang, L., Gong, L., Krishna, R. & Luo, F. (2023). CCDC 2201228: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cwkc6
Gu, S., Yu, Z., Li, N., Zhang, Q., Zhang, H., Zhang, L., Gong, L., Krishna, R. & Luo, F. (2023). CCDC 2201229: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cwkd7
Gu, S., Yu, Z., Li, N., Zhang, Q., Zhang, H., Zhang, L., Gong, L., Krishna, R. & Luo, F. (2023). CCDC 2201231: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cwkg9
Gu, S., Yu, Z., Li, N., Zhang, Q., Zhang, H., Zhang, L., Gong, L., Krishna, R. & Luo, F. (2023). CCDC 2201230: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cwkf8
Guo, L., Zhang, Q. Y., Yu, Z., Krishna, R., & Luo, F. (2023). Minute and Large-Scale Synthesis of Covalent-Organic Frameworks in Water at Room Temperature by a Two-Step Dissolution-Precipitation Method. Chemistry of Materials, 35(14), 5648-5656. https://doi.org/10.1021/acs.chemmater.3c01220[details]
Hao, C., Ge, Z., Krishna, R., Ren, H., Zhu, H., Chi, Y., Zhao, W., Liu, X., & Guo, W. (2023). Fine-tuning channel structure and surface chemistry of stable bismuth-organic frameworks for efficient C2H4 purification through reversely trapping CO2 and C2H2. Chemical engineering journal, 471, Article 144533. https://doi.org/10.1016/j.cej.2023.144533[details]
Hu, P., Hu, J., Zhu, M., Xiong, C., Krishna, R., Zhao, D., & Ji, H. (2023). Induced-Fit-Identification in a Rigid Metal-Organic Framework for ppm-Level CO2 Removal and Ultra-Pure CO Enrichment. Angewandte Chemie - International Edition, 62(40), Article e202305944. https://doi.org/10.1002/anie.202305944, https://doi.org/10.1002/ange.202305944[details]
Li, Y.-Z., Krishna, R., Xu, F., Zhang, W.-F., Sui, Y., Hou, L., Wang, Y.-Y., & Zhu, Z. (2023). A novel C2H2-selective microporous Cd-MOF for C2H2/C2H4 and C2H2/CO2 separation. Separation and Purification Technology, 306(Part A), Article 122678. https://doi.org/10.1016/j.seppur.2022.122678[details]
Li, Y.-Z., Wang, G.-D., Krishna, R., Yin, Q., Zhao, D., Qi, J., Sui, Y., & Hou, L. (2023). A separation MOF with O/N active sites in nonpolar pore for One-step C2H4 purification from C2H6 or C3H6 mixtures. Chemical engineering journal, 466, Article 143056. https://doi.org/10.1016/j.cej.2023.143056[details]
Li, Y.-Z., Wang, G.-D., Krishna, R., Yin, Q., Zhao, D., Qi, J., Sui, Y. & Hou, L. (2023). CCDC 2233136: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dyrns
Liu, X., Zhang, P., Xiong, H., Zhang, Y., Wu, K., Liu, J., Krishna, R., Chen, J., Chen, S., Zeng, Z., Deng, S., & Wang, J. (2023). Engineering Pore Environments of Sulfate-Pillared Metal-Organic Framework for Efficient C2H2/CO2 Separation with Record Selectivity. Advanced materials, 35(20), Article 2210415. https://doi.org/10.1002/adma.202210415[details]
Nie, H. X., Yu, M. H., Gao, Q., Krishna, R., & Chang, Z. (2023). Customized pore fluorination in a microporous metal-organic framework for efficient ethane/ethylene separation. Separation and Purification Technology, 327, Article 124967. https://doi.org/10.1016/j.seppur.2023.124967[details]
Wan, J., Zhou, H. L., Hyeon-Deuk, K., Chang, I. Y., Huang, Y., Krishna, R., & Duan, J. (2023). Molecular Sieving of Propyne/Propylene by a Scalable Nanoporous Crystal with Confined Rotational Shutters. Angewandte Chemie - International Edition, 62(52), Article e202316792. https://doi.org/10.1002/anie.202316792, https://doi.org/10.1002/ange.202316792[details]
Wang, G.-D., Krishna, R., Li, Y.-Z., Ma, Y.-Y., Hou, L., Wang, Y.-Y., & Zhu, Z. (2023). Rational Construction of Ultrahigh Thermal Stable MOF for Efficient Separation of MTO Products and Natural Gas. ACS Materials Letters, 5(4), 1091-1099. https://doi.org/10.1021/acsmaterialslett.3c00096[details]
Wang, L., Xu, N., Hu, Y., Sun, W., Krishna, R., Li, J., Jiang, Y., Duttwyler, S., & Zhang, Y. (2023). Efficient capture of C2H2 from CO2 and CnH4 by a novel fluorinated anion pillared MOF with flexible molecular sieving effect. Nano Research, 16(2), 3536-3541. https://doi.org/10.1007/s12274-022-4996-9[details]
Wang, L., Zhang, W., Ding, J., Gong, L., Krishna, R., Ran, Y., Chen, L. & Luo, F. (2022). CCDC 2103477: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc28lv3v
Xie, X. J., Wang, Y., Cao, Q.-Y., Krishna, R., Zeng, H., Lu, W., & Li, D. (2023). Surface engineering on a microporous metal-organic framework to boost ethane/ethylene separation under humid conditions. Chemical Science, 14(42), 11890-11895. https://doi.org/10.1039/d3sc04119k[details]
Xie, X.-J., Wang, Y., Cao, Q.-Y., Krishna, R., Zeng, H., Lu, W. & Li, D. (2023). CCDC 2258075: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2fsq43
Xie, X.-J., Wang, Y., Cao, Q.-Y., Krishna, R., Zeng, H., Lu, W. & Li, D. (2023). CCDC 2286047: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2gqtgh
Xie, X.-J., Wang, Y., Cao, Q.-Y., Krishna, R., Zeng, H., Lu, W. & Li, D. (2023). CCDC 2259108: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2ftsgj
Yang, S. Q., Krishna, R., Chen, H., Li, L., Zhou, L., An, Y.-F., Zhang, F.-Y., Zhang, Q., Zhang, Y.-H., Li, W., Hu, T.-L., & Bu, X.-H. (2023). Immobilization of the Polar Group into an Ultramicroporous Metal-Organic Framework Enabling Benchmark Inverse Selective CO2/C2H2 Separation with Record C2H2 Production. Journal of the American Chemical Society, 145(25), 13901-13911. https://doi.org/10.1021/jacs.3c03265[details]
Yang, S.-Q., Krishna, R., Chen, H., Li, L., Zhou, L., An, Y.-F., Zhang, F.-Y., Zhang, Q., Zhang, Y.-H., Li, W., Hu, T.-L. & Bu, X.-H. (2023). CCDC 2248518: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2fgrvj
Yin, M., Zhang, Q., Fan, T., Fan, C., Pu, S., Krishna, R., & Luo, F. (2023). Selective krypton uptake through trap confinement, formation of Kr2 dimer, and light response in a photochromic and radiation-resistant thorium-diarylethene-framework. Chemical engineering journal, 451(4), Article 139004. https://doi.org/10.1016/j.cej.2022.139004[details]
Yu, X., Huang, Z., Krishna, R., Luo, X., & Liu, Y. (2023). An ethynyl-modified interpenetrated metal-organic framework for highly efficient selective gas adsorption. Dalton Transactions, 52(41), 15101-15106. https://doi.org/10.1039/d3dt02834h[details]
Zhou, Y., Chen, C., Krishna, R., Ji, Z., Yuan, D. & Wu, M. (2023). CCDC 2235806: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2f1jst
Zhou, Y., Chen, C., Krishna, R., Ji, Z., Yuan, D. & Wu, M. (2023). CCDC 2235816: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2f1k35
Zhou, Y., Chen, C., Krishna, R., Ji, Z., Yuan, D. & Wu, M. (2023). CCDC 2235806: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2f1jst
2022
Chen, C. X., Pham, T., Tan, K., Krishna, R., Lan, P. C., Wang, L., Chen, S., Al-Enizi, A. M., Nafady, A., Forrest, K. A., Wang, H., Wang, S., Shan, C., Zhang, L., Su, C. Y., & Ma, S. (2022). Regulating C2H2/CO2 adsorption selectivity by electronic-state manipulation of iron in metal-organic frameworks. Cell Reports Physical Science, 3(8), Article 100977. https://doi.org/10.1016/j.xcrp.2022.100977[details]
Chen, C.-X., Pham, T., Tan, K., Krishna, R., Lan, P., Wang, L., Chen, S., Al-Enizi, A. M., Nafady, A., Forrest, K. A., Wang, H., Wang, S., Shan, C., Zhang, L., Su, C.-Y. & Ma, S. (2024). CCDC 2114493: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc28z9g1
Ding, Q., Zhang, Z., Liu, Y., Chai, K., Krishna, R., & Zhang, S. (2022). One-Step Ethylene Purification from Ternary Mixtures in a Metal–Organic Framework with Customized Pore Chemistry and Shape. Angewandte Chemie - International Edition, 61(35), Article e202208134. https://doi.org/10.1002/anie.202208134, https://doi.org/10.1002/ange.202208134[details]
Fu, X.-P., Wang, Y.-L., Zhang, X.-F., Krishna, R., He, C.-T., Liu, Q.-Y. & Chen, B. (2022). CCDC 2104434: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc28mtzq
Fu, X.-P., Wang, Y.-L., Zhang, X.-F., Krishna, R., He, C.-T., Liu, Q.-Y. & Chen, B. (2022). CCDC 2104433: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc28mtyp
Hu, P., Hu, J., Liu, H., Wang, H., Zhou, J., Krishna, R., & Ji, H. (2022). Quasi-Orthogonal Configuration of Propylene within a Scalable Metal-Organic Framework Enables Its Purification from Quinary Propane Dehydrogenation Byproducts. ACS Central Science, 8(8), 1159-1168. https://doi.org/10.1021/acscentsci.2c00554[details]
Xing, H., Xu, N., Hu, J., Wang, L., Jiang, Y., Krishna, R., Sun, W., Duttwyler, S., Zhang, Y. & Cui, X. (2022). CCDC 2142633: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc29xl61
Jiang, Y., Hu, J., Wang, L., Sun, W., Xu, N., Krishna, R., Duttwyler, S., Cui, X., Xing, H., & Zhang, Y. (2022). Comprehensive Pore Tuning in an Ultrastable Fluorinated Anion Cross-Linked Cage-Like MOF for Simultaneous Benchmark Propyne Recovery and Propylene Purification. Angewandte Chemie, 134(18), Article e202200947. https://doi.org/10.1002/ange.202200947, https://doi.org/10.1002/anie.202200947[details]
Krishna, R., & van Baten, J. M. (2022). Highlighting the Anti-Synergy between Adsorption and Diffusion in Cation-Exchanged Faujasite Zeolites. ACS Omega, 7(15), 13050-13056. https://doi.org/10.1021/acsomega.2c00427[details]
Krishna, R., & van Baten, J. M. (2022). Using the spreading pressure to inter-relate the characteristics of unary, binary and ternary mixture permeation across microporous membranes. Journal of Membrane Science, 643, Article 120049. https://doi.org/10.1016/j.memsci.2021.120049[details]
Saha, D., Comroe, M., Krishna, R., Rascavage, M., Larwa, J., You, V., Standhart, G., & Bingnear, B. (2022). Separation of propylene from propane and nitrogen by Ag(I)-doped nanoporous carbons obtained from hydrothermally treated lignin. Diamond and related materials, 121, Article 108750. https://doi.org/10.1016/j.diamond.2021.108750[details]
Sun, W., Hu, J., Duttwyler, S., Wang, L., Krishna, R., & Zhang, Y. (2022). Highly selective gas separation by two isostructural boron cluster pillared MOFs. Separation and Purification Technology, 283, Article 120220. https://doi.org/10.1016/j.seppur.2021.120220[details]
Wang, C., Sun, Y., Li, L., Krishna, R., Ji, T., Chen, S., Yan, J., & Liu, Y. (2022). Titanium-Oxo Cluster Assisted Fabrication of a Defect-Rich Ti-MOF Membrane Showing Versatile Gas-Separation Performance. Angewandte Chemie - International Edition, 61(26), Article e202203663. https://doi.org/10.1002/anie.202203663, https://doi.org/10.1002/ange.202203663[details]
Wang, C., Sun, Y., Li, L., Krishna, R., Ji, T., Chen, S., Yan, J., & Liu, Y. (2022). Titanium-Oxo Cluster Assisted Fabrication of a Defect-Rich Ti-MOF Membrane Showing Versatile Gas-Separation Performance. Angewandte Chemie, 134(26), Article e202203663. https://doi.org/10.1002/ange.202203663, https://doi.org/10.1002/anie.202203663[details]
Xiong, Y.-Y., Krishna, R., Pham, T., Forrest, K. A., Chen, C.-X., Wei, Z.-W., Jiang, J.-J., Wang, H. . P., Fan, Y., Pan, M., & Su, C.-Y. (2022). Pore-Nanospace Engineering of Mixed-Ligand Metal-Organic Frameworks for High Adsorption of Hydrofluorocarbons and Hydrochlorofluorocarbons. Chemistry of Materials, 34(11), 5116-5124. https://doi.org/10.1021/acs.chemmater.2c00601[details]
Xiong, Y.-Y., Krishna, R., Pham, T., Forrest, K. A., Chen, C.-X., Wei, Z.-W., Jiang, J.-J., Wang, H.-P., Fan, Y., Pan, M. & Su, C.-Y. (2023). CCDC 2114496: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc28z9k4
Yang, S.-Q., Zhou, L., He, Y., Krishna, R., Zhang, Q., An, Y.-F., Xing, B., Zhang, Y.-H., & Hu, T.-L. (2022). Two-Dimensional Metal-Organic Framework with Ultrahigh Water Stability for Separation of Acetylene from Carbon Dioxide and Ethylene. ACS Applied Materials and Interfaces, 14(29), 33429–33437. https://doi.org/10.1021/acsami.2c09917[details]
Yang, S.-Q., Zhou, L., He, Y., Krishna, R., Zhang, Q., An, Y.-F., Xing, B., Zhang, Y.-H. & Hu, T.-L. (2022). CCDC 2142649: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc29xlqk
Ye, Y., Xian, S., Cui, H., Tan, K., Gong, L., Liang, B., Pham, T., Pandey, H., Krishna, R., Lan, P. C., Forrest, K. A., Space, B., Thonhauser, T., Li, J., & Ma, S. (2022). Metal-Organic Framework Based Hydrogen-Bonding Nanotrap for Efficient Acetylene Storage and Separation. Journal of the American Chemical Society, 144(4), 1681-1689. https://doi.org/10.1021/jacs.1c10620[details]
Yin, M., Krishna, R., Wang, W., Yuan, D., Fan, Y., Feng, X., Wang, L., & Luo, F. (2022). A [Th8Co8] Nanocage-Based Metal-Organic Framework with Extremely Narrow Window but Flexible Nature Enabling Dual-Sieving Effect for Both Isotope and Isomer Separation. CCS Chemistry, 4(3), 1016-1027. https://doi.org/10.31635/ccschem.021.202100789[details]
Zhang, H. P., Zhang, Q. Y., Feng, X. F., Krishna, R., & Luo, F. (2022). Creating High-Number Defect Sites through a Bimetal Approach in Metal-Organic Frameworks for Boosting Trace SO2Removal. Inorganic Chemistry, 61(43), 16986-16991. https://doi.org/10.1021/acs.inorgchem.2c03177[details]
Zhang, H., Zhang, Q., Feng, X., Krishna, R. & Luo, F. (2022). CCDC 2131573: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc29k2fd
Zhang, H., Zhang, Q., Feng, X., Krishna, R. & Luo, F. (2022). CCDC 2131574: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc29k2gf
Zhang, W., Jia, W., Qin, J., Chen, L., Ran, Y., Krishna, R., Wang, L., & Luo, F. (2022). Efficient Separation of Trace SO2 from SO2/CO2/N2 Mixtures in a Th-Based MOF. Inorganic Chemistry, 61(30), 11879-11885. https://doi.org/10.1021/acs.inorgchem.2c01634[details]
Zhang, W., Jia, W., Qin, J., Chen, L., Ran, Y., Krishna, R., Wang, L. & Luo, F. (2022). CCDC 2166695: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2bqmd3
2021
Chen, Y., Du, Y., Wang, Y., Krishna, R., Li, L., Yang, J., Li, J., & Mu, B. (2021). A stable metal-organic framework with well-matched pore cavity for efficient acetylene separation. AIChE Journal, 67(5), Article e17152. https://doi.org/10.1002/aic.17152[details]
Dong, Q., Zhang, X., Liu, S., Lin, R.-B., Guo, Y., Ma, Y., Yonezu, A., Krishna, R., Liu, G., Duan, J., Matsuda, R., Jin, W., & Chen, B. (2021). Berichtigung: Tuning Gate-Opening of a Flexible Metal–Organic Framework for Ternary Gas Sieving Separation. Angewandte Chemie, 133(8), 3894. https://doi.org/10.1002/ange.202100663
Dong, Q., Zhang, X., Liu, S., Lin, R.-B., Guo, Y., Ma, Y., Yonezu, A., Krishna, R., Liu, G., Duan, J., Matsuda, R., Jin, W., & Chen, B. (2021). Corrigendum: Tuning Gate-Opening of a Flexible Metal–Organic Framework for Ternary Gas Sieving Separation (Angewandte Chemie International Edition, (2020), 59, (22756–22762), 10.1002/anie.202011802). Angewandte Chemie - International Edition, 60(8), 3850-3850. https://doi.org/10.1002/anie.202100663
Fan, Y. L., Zhang, H. P., Yin, M. J., Krishna, R., Feng, X. F., Wang, L., Luo, M. B., & Luo, F. (2021). High Adsorption Capacity and Selectivity of SO2 over CO2 in a Metal-Organic Framework. Inorganic Chemistry, 60(1), 4-8. https://doi.org/10.1021/acs.inorgchem.0c02893[details]
Fan, Y., Wang, L., Luo, F., Krishna, R., Yin, M., Luo, M., Zhang, H. & Feng, X. (2020). CCDC 2033952: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc268hcc
Fan, Y., Yin, M., Krishna, R., Feng, X., & Luo, F. (2021). Constructing a robust gigantic drum-like hydrophobic [Co24U6] nanocage in a metal-organic framework for high-performance SO2 removal in humid conditions. Journal of Materials Chemistry. A, 9(7), 4075-4081. https://doi.org/10.1039/d0ta10004h[details]
Krishna, R., Fan, Y., Luo, F., Yin, M. & Feng, X. (2021). CCDC 2032794: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc26790s
Guo, L. J., Feng, X. F., Gao, Z., Krishna, R., & Luo, F. (2021). Robust 4d-5f Bimetal-Organic Framework for Efficient Removal of Trace SO2 from SO2/CO2 and SO2/CO2/N2 Mixtures. Inorganic Chemistry, 60(3), 1310-1314. https://doi.org/10.1021/acs.inorgchem.0c03526[details]
Guo, L., Luo, F., Krishna, R., Feng, X. & Gao, Z. (2021). CCDC 2047397: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc26qh2j
He, C., Krishna, R., Chen, Y., Yang, J., Li, J., & Li, L. (2021). Ultrafine tuning of the pore size in zeolite A for efficient propyne removal from propylene. CHINESE JOURNAL OF CHEMICAL ENGINEERING, 37, 217-221. https://doi.org/10.1016/j.cjche.2020.11.037[details]
Krishna, R., & van Baten, J. M. (2021). How Reliable Is the Ideal Adsorbed Solution Theory for the Estimation of Mixture Separation Selectivities in Microporous Crystalline Adsorbents? ACS Omega, 6(23), 15499-15513. https://doi.org/10.1021/acsomega.1c02136[details]
Peng, Y-L., Wang, T., Jin, C., Li, P., Suepaul, S., Beemer, G., Chen, Y., Krishna, R., Cheng, P., Pham, T., Space, B., Zaworotko, M. J., & Zhang, Z. (2021). A robust heterometallic ultramicroporous MOF with ultrahigh selectivity for propyne/propylene separation. Journal of Materials Chemistry. A, 9(5), 2850-2856. Advance online publication. https://doi.org/10.1039/d0ta08498k[details]
Saha, D., Comroe, M., & Krishna, R. (2021). Synthesis of Cu(I) doped mesoporous carbon for selective capture of ethylene from reaction products of oxidative coupling of methane (OCM). Microporous and Mesoporous Materials, 328, Article 111488. https://doi.org/10.1016/j.micromeso.2021.111488[details]
Wang, L., Ding, J., Zhu, Y., Xu, Z., Fan, Y., Krishna, R., & Luo, F. (2021). A robust metal-organic framework showing two distinct pores for effective separation of xenon and krypton. Microporous and Mesoporous Materials, 326, Article 111350. https://doi.org/10.1016/j.micromeso.2021.111350[details]
Xu, Z., Zhu, Y., Fan, Y., Luo, F., Krishna, R., Wang, L. & Ding, J. (2021). CCDC 1974917: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc24920k
Wang, L., Sun, W., Zhang, Y., Xu, N., Krishna, R., Hu, J., Jiang, Y., He, Y., & Xing, H. (2021). Interpenetration Symmetry Control Within Ultramicroporous Robust Boron Cluster Hybrid MOFs for Benchmark Purification of Acetylene from Carbon Dioxide. Angewandte Chemie, International Edition, 60(42), 22865-22870. Advance online publication. https://doi.org/10.1002/anie.202107963, https://doi.org/10.1002/ange.202107963[details]
Wang, L., Sun, W., Zhang, Y., Xu, N., Krishna, R., Hu, J., Jiang, Y., He, Y., & Xing, H. (2021). Interpenetration Symmetry Control Within Ultramicroporous Robust Boron Cluster Hybrid MOFs for Benchmark Purification of Acetylene from Carbon Dioxide. Angewandte Chemie, 133(42), 23047-23052. Advance online publication. https://doi.org/10.1002/ange.202107963, https://doi.org/10.1002/anie.202107963[details]
Yang, S-Q., Sun, F-Z., Liu, P., Li, L., Krishna, R., Zhang, Y-H., Li, Q., Zhou, L., & Hu, T-L. (2021). Efficient Purification of Ethylene from C2 Hydrocarbons with an C2H6/C2H2-Selective Metal-Organic Framework. ACS Applied Materials and Interfaces, 13(1), 962-969. Advance online publication. https://doi.org/10.1021/acsami.0c20000[details]
Yang, S.-Q., Sun, F.-Z., Krishna, R., Zhang, Q., Zhou, L., Zhang, Y.-H., & Hu, T.-L. (2021). Propane-Trapping Ultramicroporous Metal-Organic Framework in the Low-Pressure Area toward the Purification of Propylene. ACS Applied Materials and Interfaces, 13(30), 35990-35996. https://doi.org/10.1021/acsami.1c09808[details]
Yin, M. J., Xiong, X. H., Feng, X. F., Xu, W. Y., Krishna, R., & Luo, F. (2021). A Robust Cage-Based Metal-Organic Framework Showing Ultrahigh SO2 Uptake for Efficient Removal of Trace SO2 from SO2/CO2 and SO2/CO2/N2 Mixtures. Inorganic Chemistry, 60(5), 3447-3451. https://doi.org/10.1021/acs.inorgchem.1c00033[details]
Xu, W., Yin, M., Luo, F., Xiong, X., Feng, X. & Krishna, R. (2021). CCDC 2047694: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc26qsnd
Yuan, J., Liu, Z., Wu, Y., Han, J., Tang, X., Li, C., Chen, W., Yi, X., Zhou, J., Krishna, R., Sastre, G., & Zheng, A. (2021). Thermal resistance effect on anomalous diffusion of molecules under confinement. Proceedings of the National Academy of Sciences of the United States of America, 118(21), Article e2102097118. https://doi.org/10.1073/pnas.2102097118[details]
Zhang, H., Fan, Y., Krishna, R., Feng, X., Wang, L., & Luo, F. (2021). Robust metal-organic framework with multiple traps for trace Xe/Kr separation. Science Bulletin, 66(11), 1073-1079. https://doi.org/10.1016/j.scib.2020.12.031[details]
Zhang, H., Fan, Y., Krishna, R., Feng, X., Wang, L. & Luo, F. (2023). CCDC 1952310: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc23jjry
Zhang, X., Cui, H., Lin, R.-B., Krishna, R., Zhang, Z.-Y., Liu, T., Liang, B., & Chen, B. (2021). Realization of Ethylene Production from Its Quaternary Mixture through Metal-Organic Framework Materials. ACS Applied Materials and Interfaces, 13(19), 22514-22520. https://doi.org/10.1021/acsami.1c03923[details]
Zhang, X., Wang, J-X., Li, L., Pei, J., Krishna, R., Wu, H., Zhou, W., Qian, G., Chen, B., & Li, B. (2021). A Rod-Packing Hydrogen-Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. Angewandte Chemie, International Edition, 60(18), 10304-10310. Advance online publication. https://doi.org/10.1002/anie.202100342, https://doi.org/10.1002/ange.202100342[details]
Qian, G., Chen, B., Krishna, R., Li, B., Zhang, X., Zhou, W., Li, L., Wu, H., Pei, J. & Wang, J.-X. (2021). CCDC 1971951: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc245zbn
Zhang, X., Wang, J-X., Li, L., Pei, J., Krishna, R., Wu, H., Zhou, W., Qian, G., Chen, B., & Li, B. (2021). A Rod-Packing Hydrogen-Bonded Organic Framework with Suitable Pore Confinement for Benchmark Ethane/Ethylene Separation. Angewandte Chemie, 133(18), 10392-10398. Advance online publication. https://doi.org/10.1002/ange.202100342, https://doi.org/10.1002/anie.202100342[details]
Zhang, Z., Peh, S. B., Krishna, R., Kang, C., Chai, K., Wang, Y., Shi, D., & Zhao, D. (2021). Optimal Pore Chemistry in an Ultramicroporous Metal-Organic Framework for Benchmark Inverse CO2/C2H2 Separation. Angewandte Chemie, International Edition, 60(31), 17198-17204. https://doi.org/10.1002/anie.202106769, https://doi.org/10.1002/ange.202106769[details]
Krishna, R., Shi, D., Zhao, D., Kang, C., Zhang, Z., Peh, S., Chai, K. & Wang, Y. (2021). CCDC 2102602: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc28kxwn
Asgari, M., Semino, R., Schouwink, P. A., Kochetygov, I., Tarver, J., Trukhina, O., Krishna, R., Brown, C. M., Ceriotti, M., & Queen, W. L. (2020). Understanding How Ligand Functionalization Influences CO2 and N2 Adsorption in a Sodalite Metal-Organic Framework. Chemistry of Materials, 32(4), 1526-1536. https://doi.org/10.1021/acs.chemmater.9b04631[details]
Queen, W. L., Asgari, M., Brown, C. M., Krishna, R., Kochetygov, I., Trukhina, O., Schouwink, P. A., Tarver, J., Ceriotti, M. & Semino, R. (2020). CCDC 1893606: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21kg25
Asgari, M., Schouwink, P. A., Krishna, R., Brown, C. M., Semino, R., Queen, W. L., Kochetygov, I., Trukhina, O., Ceriotti, M. & Tarver, J. (2020). CCDC 1893610: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21kg69
Trukhina, O., Krishna, R., Queen, W. L., Ceriotti, M., Asgari, M., Brown, C. M., Semino, R., Tarver, J., Kochetygov, I. & Schouwink, P. A. (2020). CCDC 1894884: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21ls9r
Tarver, J., Brown, C. M., Asgari, M., Schouwink, P. A., Semino, R., Queen, W. L., Krishna, R., Trukhina, O., Ceriotti, M. & Kochetygov, I. (2020). CCDC 1893608: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21kg47
Queen, W. L., Tarver, J., Trukhina, O., Semino, R., Ceriotti, M., Asgari, M., Krishna, R., Schouwink, P. A., Kochetygov, I. & Brown, C. M. (2020). CCDC 1893609: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21kg58
Dong, Q., Zhang, X., Liu, S., Lin, R-B., Guo, Y., Ma, Y., Yonezu, A., Krishna, R., Liu, G., Duan, J., Matsuda, R., Jin, W., & Chen, B. (2020). Tuning Gate-Opening of a Flexible Metal-Organic Framework for Ternary Gas Sieving Separation. Angewandte Chemie, International Edition, 59(50), 22756-22762. https://doi.org/10.1002/anie.202011802, https://doi.org/10.1002/ange.202011802[details]
Krishna, R. (2020). Highlighting Thermodynamic Coupling Effects in the Immersion Precipitation Process for Formation of Polymeric Membranes. ACS Omega, 5(6), 2819-2828. https://doi.org/10.1021/acsomega.9b03609[details]
Krishna, R. (2020). Metrics for Evaluation and Screening of Metal-Organic Frameworks for Applications in Mixture Separations. ACS Omega, 5(28), 16987-17004. https://doi.org/10.1021/acsomega.0c02218[details]
Krishna, R., & Van Baten, J. M. (2020). Using Molecular Simulations to Unravel the Benefits of Characterizing Mixture Permeation in Microporous Membranes in Terms of the Spreading Pressure. ACS Omega, 5(50), 32769–32780. https://doi.org/10.1021/acsomega.0c05269[details]
Krishna, R., & van Baten, J. M. (2020). Elucidation of Selectivity Reversals for Binary Mixture Adsorption in Microporous Adsorbents. ACS Omega, 5(15), 9031-9040. https://doi.org/10.1021/acsomega.0c01051[details]
Krishna, R., & van Baten, J. M. (2020). Using Molecular Simulations for Elucidation of Thermodynamic Nonidealities in Adsorption of CO2-Containing Mixtures in NaX Zeolite. ACS Omega, 5(32), 20535-20542. https://doi.org/10.1021/acsomega.0c02730[details]
Krishna, R., & van Baten, J. M. (2020). Water/Alcohol Mixture Adsorption in Hydrophobic Materials: Enhanced Water Ingress Caused by Hydrogen Bonding. ACS Omega, 5(43), 28393-28402. https://doi.org/10.1021/acsomega.0c04491[details]
Liang, B., Zhang, X., Xie, Y., Lin, R-B., Krishna, R., Cui, H., Li, Z., Shi, Y., Wu, H., Zhou, W., & Chen, B. (2020). An Ultramicroporous Metal-Organic Framework for High Sieving Separation of Propylene from Propane. Journal of the American Chemical Society, 142(41), 17795-17801. https://doi.org/10.1021/jacs.0c09466[details]
Saha, D., Toof, B., Krishna, R., Orkoulas, G., Gismondi, P., Thorpe, R., & Comroe, M. L. (2020). Separation of ethane-ethylene and propane-propylene by Ag(I) doped and sulfurized microporous carbon. Microporous and Mesoporous Materials, 299, Article 110099. https://doi.org/10.1016/j.micromeso.2020.110099[details]
Sun, F-Z., Yang, S-Q., Krishna, R., Zhang, Y-H., Xia, Y-P., & Hu, T-L. (2020). Microporous Metal-Organic Framework with a Completely Reversed Adsorption Relationship for C2 Hydrocarbons at Room Temperature. ACS Applied Materials and Interfaces, 12(5), 6105-6111. https://doi.org/10.1021/acsami.9b22410[details]
Sun, X., Li, X., Yao, S., Krishna, R., Gu, J., Li, G., & Liu, Y. (2020). A multifunctional double walled zirconium metal–organic framework: high performance for CO2 adsorption and separation and detecting explosives in the aqueous phase. Journal of Materials Chemistry. A, 8(33), 17106-17112. https://doi.org/10.1039/d0ta04778c[details]
Tao, Y., Fan, Y., Xu, Z., Feng, X., Krishna, R., & Luo, F. (2020). Boosting Selective Adsorption of Xe over Kr by Double-Accessible Open-Metal Site in Metal-Organic Framework: Experimental and Theoretical Research. Inorganic Chemistry, 59(16), 11793-11800. https://doi.org/10.1021/acs.inorgchem.0c01766[details]
Wang, L., Yang, L., Gong, L., Krishna, R., Gao, Z., Tao, Y., Yin, W., Xu, Z., & Luo, F. (2020). Constructing redox-active microporous hydrogen-bonded organic framework by imide-functionalization: Photochromism, electrochromism, and selective adsorption of C2H2 over CO2. Chemical engineering journal, 383, Article 123117. https://doi.org/10.1016/j.cej.2019.123117[details]
Luo, F., Krishna, R., Xiong, J., Chen, B., Xiong, X., Li, L., Xu, Z. & Fan, Y. (2020). CCDC 1969398: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc2439zk
Yang, H., Wang, Y., Krishna, R., Jia, X., Wang, Y., Hong, A. N., Dang, C., Castillo, H. E., Bu, X., & Feng, P. (2020). Pore-Space-Partition-Enabled Exceptional Ethane Uptake and Ethane-Selective Ethane-Ethylene Separation. Journal of the American Chemical Society, 142(5), 2222-2227. https://doi.org/10.1021/jacs.9b12924[details]
Wang, Y., Hong, A. N., Jia, X., Krishna, R., Bu, X., Castillo, H. E., Feng, P., Yang, H., Wang, Y. & Dang, C. (2020). CCDC 1967756: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241m0v
Jia, X., Feng, P., Dang, C., Hong, A. N., Wang, Y., Yang, H., Bu, X., Castillo, H. E., Wang, Y. & Krishna, R. (2020). CCDC 1967755: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241lzs
Feng, P., Hong, A. N., Wang, Y., Wang, Y., Krishna, R., Bu, X., Yang, H., Dang, C., Jia, X. & Castillo, H. E. (2020). CCDC 1967761: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241m50
Wang, Y., Krishna, R., Jia, X., Bu, X., Wang, Y., Feng, P., Castillo, H. E., Dang, C., Hong, A. N. & Yang, H. (2020). CCDC 1967760: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241m4z
Feng, P., Wang, Y., Dang, C., Bu, X., Jia, X., Yang, H., Krishna, R., Castillo, H. E., Wang, Y. & Hong, A. N. (2020). CCDC 1967759: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241m3y
Wang, Y., Castillo, H. E., Krishna, R., Hong, A. N., Jia, X., Yang, H., Dang, C., Wang, Y., Feng, P. & Bu, X. (2020). CCDC 1967758: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241m2x
Krishna, R., Yang, H., Dang, C., Wang, Y., Feng, P., Wang, Y., Hong, A. N., Bu, X., Jia, X. & Castillo, H. E. (2020). CCDC 1967757: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241m1w
Zhang, X., Li, L., Wang, J.-X., Wen, H.-M., Krishna, R., Wu, H., Zhou, W., Chen, Z.-N., Li, B., Qian, G., & Chen, B. (2020). Selective Ethane/Ethylene Separation in a Robust Microporous Hydrogen-Bonded Organic Framework. Journal of the American Chemical Society, 142(1), 633-640. https://doi.org/10.1021/jacs.9b12428[details]
Yang, L., Cui, X., Duttwyler, S., Krishna, R., Hu, J., Zhang, Y., Wang, L. & Xing, H. (2020). CCDC 1956266: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23nnct
Zhang, Y., Hu, J., Krishna, R., Wang, L., Yang, L., Cui, X., Duttwyler, S., & Xing, H. (2020). Rational Design of Microporous MOFs with Anionic Boron Cluster Functionality and Cooperative Dihydrogen Binding Sites for Highly Selective Capture of Acetylene. Angewandte Chemie, 132(40), 17817-17822. https://doi.org/10.1002/ange.202007681, https://doi.org/10.1002/anie.202007681[details]
van Zandvoort, I., Ras, E-J., de Graaf, R., & Krishna, R. (2020). Using transient breakthrough experiments for screening of adsorbents for separation of C2H4/CO2 mixtures. Separation and Purification Technology, 241, Article 116706. https://doi.org/10.1016/j.seppur.2020.116706[details]
Du, J., Cui, Y., Liu, Y., Krishna, R., Yu, Y., Wang, S., Zhang, C., Song, X., & Liang, Z. (2019). Preparation of benzodiimidazole-containing covalent triazine frameworks for enhanced selective CO2 capture and separation. Microporous and Mesoporous Materials, 276, 213-222. https://doi.org/10.1016/j.micromeso.2018.10.001[details]
Krishna, R. (2019). Diffusing uphill with James Clerk Maxwell and Josef Stefan. Chemical Engineering Science, 195, 851-880. Advance online publication. https://doi.org/10.1016/j.ces.2018.10.032[details]
Krishna, R. (2019). Elucidation and characterization of entropy effects in mixture separations with micro-porous crystalline adsorbents. Separation and Purification Technology, 215, 227-241. https://doi.org/10.1016/j.seppur.2019.01.014[details]
Krishna, R. (2019). Highlighting Thermodynamic Coupling Effects in Alcohol/Water Pervaporation across Polymeric Membranes. ACS Omega, 4(12), 15255-15264. Article 4. https://doi.org/10.1021/acsomega.9b02255[details]
Krishna, R. (2019). Highlighting the Influence of Thermodynamic Coupling on Kinetic Separations with Microporous Crystalline Materials. ACS Omega, 4(2), 3409-3419. https://doi.org/10.1021/acsomega.8b03480[details]
Krishna, R. (2019). Maxwell-Stefan modelling of mixture desorption kinetics in microporous crystalline materials. Separation and Purification Technology, 229, Article 115790. https://doi.org/10.1016/j.seppur.2019.115790[details]
Krishna, R. (2019). Thermodynamic Insights into the Characteristics of Unary and Mixture Permeances in Microporous Membranes. ACS Omega, 4(5), 9512-9521. https://doi.org/10.1021/acsomega.9b00907[details]
Krishna, R. (2019). Thermodynamically Consistent Methodology for Estimation of Diffusivities of Mixtures of Guest Molecules in Microporous Materials. ACS Omega, 4(8), 13520-13529. https://doi.org/10.1021/acsomega.9b01873[details]
Krishna, R., & van Baten, J. M. (2019). Elucidating Traffic Junction Effects in MFI Zeolite Using Kinetic Monte Carlo Simulations. ACS Omega, 4(6), 10761-10766. https://doi.org/10.1021/acsomega.9b01369[details]
Wang, W., Liu, Q.-Y., Wang, Y.-L., Liu, R., He, C.-T. & Krishna, R. (2019). CCDC 1891457: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21h6rj
Mukherjee, S., Das, M., Manna, A., Krishna, R., & Das, S. (2019). Dual Strategic Approach to Prepare Defluorinated Triazole-Embedded Covalent Triazine Frameworks with High Gas Uptake Performance. Chemistry of Materials, 31(11), 3929-3940. https://doi.org/10.1021/acs.chemmater.8b05365[details]
Mukherjee, S., Das, M., Manna, A., Krishna, R., & Das, S. (2019). Newly designed 1,2,3-triazole functionalized covalent triazine frameworks with exceptionally high uptake capacity for both CO2 and H2. Journal of Materials Chemistry. A, 7(3), 1055-1068. https://doi.org/10.1039/c8ta08185a[details]
Peng, Y-L., He, C., Pham, T., Wang, T., Li, P., Krishna, R., Forrest, K. A., Hogan, A., Suepaul, S., Space, B., Fang, M., Chen, Y., Zaworotko, M. J., Li, J., Li, L., Zhang, Z., Cheng, P., & Chen, B. (2019). Robust Microporous Metal-Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie, International Edition, 58(30), 10209-10214. Advance online publication. https://doi.org/10.1002/anie.201904312, https://doi.org/10.1002/ange.201904312[details]
Zhang, Z., Peng, Y.-L., Li, J., Zaworotko, M. J., Hogan, A., Forrest, K. A., Pham, T., Cheng, P., Chen, Y., Fang, M., Li, P., Krishna, R., Li, L., Chen, B., He, C., Suepaul, S., Space, B. & Wang, T. (2019). CCDC 1904988: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21y97k
Cheng, P., Wang, T., Li, P., Chen, Y., Space, B., Suepaul, S., Li, L., Hogan, A., Fang, M., Krishna, R., Peng, Y.-L., Chen, B., Li, J., Forrest, K. A., Zhang, Z., He, C., Zaworotko, M. J. & Pham, T. (2019). CCDC 1859293: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc20dr6d
Peng, Y-L., He, C., Pham, T., Wang, T., Li, P., Krishna, R., Forrest, K. A., Hogan, A., Suepaul, S., Space, B., Fang, M., Chen, Y., Zaworotko, M. J., Li, J., Li, L., Zhang, Z., Cheng, P., & Chen, B. (2019). Robust Microporous Metal-Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie, 131(30), 10315-10320. Advance online publication. https://doi.org/10.1002/ange.201904312, https://doi.org/10.1002/anie.201904312[details]
Tao, Y., Krishna, R., Yang, L. X., Fan, Y. L., Wang, L., Gao, Z., Xiong, J. B., Sun, L. J., & Luo, F. (2019). Enhancing C2H2/C2H4 separation by incorporating low-content sodium in covalent organic frameworks. Inorganic Chemistry Frontiers, 6(10), 2921-2926. https://doi.org/10.1039/c9qi00922a[details]
Wen, H-M., Liao, C., Li, L., Alsalme, A., Alothman, Z., Krishna, R., Wu, H., Zhou, W., Hu, J., & Chen, B. (2019). A metal-organic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO2 capture. Journal of Materials Chemistry. A, 7(7), 3128-3134. https://doi.org/10.1039/c8ta11596f[details]
Hu, J., Zhou, W., Chen, B., Alothman, Z., Wu, H., Wen, H.-M., Krishna, R., Liao, C., Alsalme, A. & Li, L. (2019). CCDC 1881280: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc214mg9
Hu, J., Wen, H.-M., Alsalme, A., Zhou, W., Liao, C., Alothman, Z., Li, L., Chen, B., Wu, H. & Krishna, R. (2019). CCDC 1882294: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc215p53
Ye, Y., Ma, Z., Lin, R-B., Krishna, R., Zhou, W., Lin, Q., Zhang, Z., Xiang, S., & Chen, B. (2019). Pore Space Partition within a Metal–Organic Framework for Highly Efficient C2H2/CO2 Separation. Journal of the American Chemical Society, 141(9), 4130-4136. https://doi.org/10.1021/jacs.9b00232[details]
Ye, Y., Krishna, R., Zhou, W., Zhang, Z., Xiang, S., Lin, R.-B., Ma, Z., Chen, B. & Lin, Q. (2019). CCDC 1882901: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc2169rb
Yu, M-H., Space, B., Franz, D., Zhou, W., He, C., Li, L., Krishna, R., Chang, Z., Li, W., Hu, T-L., & Bu, X-H. (2019). Enhanced Gas Uptake in a Microporous Metal-Organic Framework via a Sorbate Induced-Fit Mechanism. Journal of the American Chemical Society, 141(44), 17703-17712. https://doi.org/10.1021/jacs.9b07807[details]
Bu, X.-H., Hu, T.-L., Li, W., Li, L., Franz, D., Krishna, R., Yu, M.-H., Chang, Z., Zhou, W., Space, B. & He, C. (2019). CCDC 1840022: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrpkz
Bu, X.-H., Yu, M.-H., Hu, T.-L., Franz, D., Space, B., Li, L., Li, W., He, C., Chang, Z., Zhou, W. & Krishna, R. (2019). CCDC 1840020: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrphx
Chang, Z., Franz, D., Yu, M.-H., Zhou, W., He, C., Bu, X.-H., Li, W., Li, L., Hu, T.-L., Krishna, R. & Space, B. (2019). CCDC 1840019: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrpgw
Space, B., Zhou, W., Li, L., Yu, M.-H., Bu, X.-H., Franz, D., Hu, T.-L., He, C., Li, W., Krishna, R. & Chang, Z. (2019). CCDC 1840018: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrpfv
Franz, D., Hu, T.-L., He, C., Li, L., Krishna, R., Space, B., Zhou, W., Li, W., Bu, X.-H., Chang, Z. & Yu, M.-H. (2019). CCDC 1840017: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrpdt
Hu, T.-L., He, C., Chang, Z., Krishna, R., Li, L., Space, B., Zhou, W., Yu, M.-H., Franz, D., Bu, X.-H. & Li, W. (2019). CCDC 1840021: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrpjy
Franz, D., Yu, M.-H., Bu, X.-H., Li, W., Li, L., Zhou, W., Space, B., Krishna, R., He, C., Hu, T.-L. & Chang, Z. (2019). CCDC 1840016: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrpcs
Zeng, H., Xie, M., Huang, Y-L., Zhao, Y., Xie, X-J., Bai, J-P., Wan, M-Y., Krishna, R., Lu, W., & Li, D. (2019). Induced Fit of C2H2 in a Flexible MOF Through Cooperative Action of Open Metal Sites. Angewandte Chemie, International Edition, 58(25), 8515-8519. https://doi.org/10.1002/anie.201904160, https://doi.org/10.1002/ange.201904160[details]
van Zandvoort, I., van der Waal, J. K., Ras, E-J., de Graaf, R., & Krishna, R. (2019). Highlighting non-idealities in C2H4/CO2 mixture adsorption in 5A zeolite. Separation and Purification Technology, 227, Article 115730. https://doi.org/10.1016/j.seppur.2019.115730[details]
2018
Bao, Z., Wang, J., Zhang, Z., Xing, H., Yang, Q., Yang, Y., Wu, H., Krishna, R., Zhou, W., Chen, B., & Ren, Q. (2018). Molecular Sieving of Ethane from Ethylene through the Molecular Cross-Section Size Differentiation in Gallate-based Metal-Organic Frameworks. Angewandte Chemie, International Edition, 57(49), 16020-16025. https://doi.org/10.1002/anie.201808716, https://doi.org/10.1002/ange.201808716[details]
Xing, H., Ren, Q., Yang, Q., Wang, J., Chen, B., Krishna, R., Zhou, W., Yang, Y., Zhang, Z., Wu, H. & Bao, Z. (2019). CCDC 1963021: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23wp8z
Chen, B., Zhang, Z., Zhou, W., Yang, Y., Wang, J., Bao, Z., Xing, H., Krishna, R., Yang, Q., Ren, Q. & Wu, H. (2019). CCDC 1963020: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23wp7y
Zhou, W., Xing, H., Wang, J., Krishna, R., Yang, Q., Yang, Y., Chen, B., Ren, Q., Bao, Z., Zhang, Z. & Wu, H. (2019). CCDC 1963019: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23wp6x
Chen, B., Wang, J., Krishna, R., Ren, Q., Wu, H., Bao, Z., Yang, Y., Zhou, W., Yang, Q., Zhang, Z. & Xing, H. (2019). CCDC 1963023: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23wpb1
Xing, H., Yang, Q., Wu, H., Zhang, Z., Yang, Y., Bao, Z., Ren, Q., Zhou, W., Chen, B., Wang, J. & Krishna, R. (2019). CCDC 1963022: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23wp90
Bao, Z., Wang, J., Zhang, Z., Xing, H., Yang, Q., Yang, Y., Wu, H., Krishna, R., Zhou, W., Chen, B., & Ren, Q. (2018). Molecular Sieving of Ethane from Ethylene through the Molecular Cross-Section Size Differentiation in Gallate-based Metal-Organic Frameworks. Angewandte Chemie, 130(49), 16252-16257. https://doi.org/10.1002/ange.201808716, https://doi.org/10.1002/anie.201808716[details]
Bower, J. K., Barpaga, D., Prodinger, S., Krishna, R., Schaef, H. T., McGrail, B. P., Derewinski, M. A., & Motkuri, R. K. (2018). Dynamic Adsorption of CO2/N2 on Cation-Exchanged Chabazite SSZ-13: A Breakthrough Analysis. ACS Applied Materials and Interfaces, 10(17), 14287-14291. https://doi.org/10.1021/acsami.8b03848[details]
Du, J., Liu, Y., Krishna, R., Yu, Y., Cui, Y., Wang, S., Liu, Y., Song, X., & Liang, Z. (2018). Enhancing Gas Sorption and Separation Performance via Bisbenzimidazole Functionalization of Highly Porous Covalent Triazine Frameworks. ACS Applied Materials and Interfaces, 10(31), 26678-26686. https://doi.org/10.1021/acsami.8b08625[details]
Dvoyashkina, N., Freude, D., Stepanov, A. G., Böhlmann, W., Krishna, R., Kärger, J., & Haase, J. (2018). Alkane/alkene mixture diffusion in silicalite-1 studied by MAS PFG NMR. Microporous and Mesoporous Materials, 257, 128-134. https://doi.org/10.1016/j.micromeso.2017.08.015[details]
Krishna, R. (2018). A Maxwell-Stefan-Glueckauf description of transient mixture uptake in microporous adsorbents. Separation and Purification Technology, 191, 392-399. https://doi.org/10.1016/j.seppur.2017.09.057[details]
Krishna, R. (2018). Methodologies for screening and selection of crystalline microporous materials in mixture separations. Separation and Purification Technology, 194, 281-300. https://doi.org/10.1016/j.seppur.2017.11.056[details]
Krishna, R. (2018). The Maxwell-Stefan description of mixture permeation across nanoporous graphene membranes. Transactions of the Institution of Chemical Engineers. Pt. A: Chemical engineering research & design, 133, 316-325. https://doi.org/10.1016/j.cherd.2018.03.033[details]
Krishna, R., & van Baten, J. M. (2018). Investigating the non-idealities in adsorption of CO2-bearing mixtures in cation-exchanged zeolites. Separation and Purification Technology, 206, 208-217. https://doi.org/10.1016/j.seppur.2018.06.009[details]
Krishna, R., & van Baten, J. M. (2018). Using Molecular Dynamics simulations for elucidation of molecular traffic in ordered crystalline microporous materials. Microporous and Mesoporous Materials, 258, 151-169. https://doi.org/10.1016/j.micromeso.2017.09.014[details]
Krishna, R., van Baten, J. M., & Baur, R. (2018). Highlighting the origins and consequences of thermodynamic non-idealities in mixture separations using zeolites and metal-organic frameworks. Microporous and Mesoporous Materials, 267, 274-292. https://doi.org/10.1016/j.micromeso.2018.03.013[details]
Li, L., Lin, R-B., Krishna, R., Li, H., Xiang, S., Wu, H., Li, J., Zhou, W., & Chen, B. (2018). Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 362(6413), 443-446. https://doi.org/10.1126/science.aat0586[details]
Lin, R.-B., Li, H., Chen, B., Li, L., Zhou, W., Li, J., Krishna, R., Xiang, S. & Wu, H. (2018). CCDC 1817716: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1z0h0h
Li, L., Li, J., Chen, B., Li, H., Lin, R.-B., Krishna, R., Xiang, S., Wu, H. & Zhou, W. (2018). CCDC 1817715: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1z0gzf
Lin, R.-B., Li, H., Krishna, R., Chen, B., Zhou, W., Wu, H., Li, J., Xiang, S. & Li, L. (2018). CCDC 1859808: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc20f8tk
Zhou, W., Wu, H., Li, J., Li, H., Xiang, S., Krishna, R., Li, L., Chen, B. & Lin, R.-B. (2018). CCDC 1859806: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc20f8rh
Li, L., Wu, H., Lin, R.-B., Li, H., Krishna, R., Zhou, W., Xiang, S., Li, J. & Chen, B. (2018). CCDC 1859807: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc20f8sj
Lin, R.-B., Chen, B., Wu, H., Zhou, W., Li, J., Xiang, S., Li, H., Krishna, R. & Li, L. (2018). CCDC 1574717: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1pvmbh
Wu, H., Li, L., Xiang, S., Lin, R.-B., Chen, B., Krishna, R., Li, H., Zhou, W. & Li, J. (2018). CCDC 1574716: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1pvm9g
Li, L., Wen, H-M., He, C., Lin, R-B., Krishna, R., Wu, H., Zhou, W., Li, J., Li, B., & Chen, B. (2018). A Metal-Organic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene. Angewandte Chemie, International Edition, 57(46), 15183-15188. https://doi.org/10.1002/anie.201809869, https://doi.org/10.1002/ange.201809869[details]
Li, L., Wen, H-M., He, C., Lin, R-B., Krishna, R., Wu, H., Zhou, W., Li, J., Li, B., & Chen, B. (2018). A Metal-Organic Framework with Suitable Pore Size and Specific Functional Sites for the Removal of Trace Propyne from Propylene. Angewandte Chemie, 130(46), 15403-15408. https://doi.org/10.1002/ange.201809869, https://doi.org/10.1002/anie.201809869[details]
Lin, R-B., Li, L., Zhou, H-L., Wu, H., He, C., Li, S., Krishna, R., Li, J., Zhou, W., & Chen, B. (2018). Molecular sieving of ethylene from ethane using a rigid metal-organic framework. Nature Materials, 17(12), 1128-1133. https://doi.org/10.1038/s41563-018-0206-2[details]
Wang, X., Krishna, R., Li, L., Wang, B., He, T., Zhang, Y-Z., Li, J-R., & Li, J. (2018). Guest-dependent pressure induced gate-opening effect enables effective separation of propene and propane in a flexible MOF. Chemical engineering journal, 346, 489-496. https://doi.org/10.1016/j.cej.2018.03.163[details]
Wang, Y., He, M., Gao, X., Li, S., Xiong, S., Krishna, R., & He, Y. (2018). Exploring the Effect of Ligand-Originated MOF Isomerism and Methoxy Group Functionalization on Selective Acetylene/Methane and Carbon Dioxide/Methane Adsorption Properties in Two NbO-Type MOFs. ACS Applied Materials and Interfaces, 10(24), 20559-20568. https://doi.org/10.1021/acsami.8b05216[details]
He, M., Xiong, S., Krishna, R., Li, S., Wang, Y., He, Y. & Gao, X. (2018). CCDC 1823337: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1z6bbv
Li, S., He, Y., Xiong, S., Krishna, R., He, M., Wang, Y. & Gao, X. (2018). CCDC 1823336: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1z6b9t
Wu, H. Q., Yan, C. S., Luo, F., & Krishna, R. (2018). Beyond Crystal Engineering: Significant Enhancement of C2H2/CO2 Separation by Constructing Composite Material. Inorganic Chemistry, 57(7), 3679-3682. https://doi.org/10.1021/acs.inorgchem.8b00341[details]
Yang, J., Du, B., Liu, J., Krishna, R., Zhang, F., Zhou, W., Wang, Y., Li, J., & Chen, B. (2018). MIL-100Cr with open Cr sites for a record N2O capture. Chemical Communications, 54(100), 14061-14064. https://doi.org/10.1039/c8cc07679k[details]
Yang, J., Shang, H., Krishna, R., Wang, Y., Ouyang, K., & Li, J. (2018). Adjusting the proportions of extra-framework K+ and Cs+ cations to construct a “molecular gate” on ZK-5 for CO2 removal. Microporous and Mesoporous Materials, 268, 50-57. https://doi.org/10.1016/j.micromeso.2018.03.034[details]
Yu, Y., Li, X., Krishna, R., Liu, Y., Cui, Y., Du, J., Liang, Z., Song, X., & Yu, J. (2018). Enhancing CO2 Adsorption and Separation Properties of Aluminophosphate Zeolites by Isomorphous Heteroatom Substitutions. ACS Applied Materials and Interfaces, 10(50), 43570-43577. https://doi.org/10.1021/acsami.8b11235[details]
2017
Cao, H., Wang, S., Wang, Y., Lyu, H., Krishna, R., Lu, Z., Duan, J., & Jin, W. (2017). Pre-design and synthesis of a five-fold interpenetrated pcu-type porous coordination polymer and its CO2/CO separation. CrystEngComm, 19(46), 6927-6931. https://doi.org/10.1039/C7CE01649B[details]
Zhang, Z., Yang, L., Wu, H., Yang, Q., Cui, X., Chen, B., Zhou, W., Xing, H., Krishna, R., Ren, Q. & Bao, Z. (2017). CCDC 1545670: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1nwdb8
Ellenberger, J., & Krishna, R. (2017). Flow Enhancement of Shear-Thinning Liquids in Capillaries Subjected to Longitudinal Vibrations. Chemie Ingenieur Technik, 89(10), 1360-1366. https://doi.org/10.1002/cite.201700028[details]
Fan, C. B., Gong, L. L., Huang, L., Luo, F., Krishna, R., Yi, X. F., Zheng, A. M., Zhang, L., Pu, S. Z., Feng, X. F., Luo, M. B., & Guo, G. C. (2017). Significant Enhancement of C2H2/C2H4 Separation by a Photochromic Diarylethene Unit: A Temperature- and Light-Responsive Separation Switch. Angewandte Chemie, International Edition, 56(27), 7900-7906. https://doi.org/10.1002/anie.201702484, https://doi.org/10.1002/ange.201702484[details]
Fan, C. B., Gong, L. L., Huang, L., Luo, F., Krishna, R., Yi, X. F., Zheng, A. M., Zhang, L., Pu, S. Z., Feng, X. F., Luo, M. B., & Guo, G. C. (2017). Significant Enhancement of C2H2/C2H4 Separation by a Photochromic Diarylethene Unit: A Temperature- and Light-Responsive Separation Switch. Angewandte Chemie, 129(27), 8008-8014. https://doi.org/10.1002/ange.201702484, https://doi.org/10.1002/anie.201702484[details]
Krishna, R. (2017). Highlighting multiplicity in the Gilliland solution to the Maxwell-Stefan equations describing diffusion distillation. Chemical Engineering Science, 164, 63-70. https://doi.org/10.1016/j.ces.2017.01.060[details]
Krishna, R. (2017). Resolving steady-state multiplicities for diffusion with surface chemical reaction by invoking the Prigogine principle of minimum entropy production. Transactions of the Institution of Chemical Engineers. Pt. A: Chemical engineering research & design, 128, 231-239. https://doi.org/10.1016/j.cherd.2017.10.028[details]
Krishna, R. (2017). Screening metal-organic frameworks for mixture separations in fixed-bed adsorbers using a combined selectivity/capacity metric. RSC Advances, 7(57), 35724-35737. https://doi.org/10.1039/c7ra07363a[details]
Krishna, R. (2017). Using the Maxwell-Stefan formulation for highlighting the influence of interspecies (1-2) friction on binary mixture permeation across microporous and polymeric membranes. Journal of Membrane Science, 540, 261-276. https://doi.org/10.1016/j.memsci.2017.06.062[details]
Krishna, R., & van Baten, J. M. (2017). Commensurate-incommensurate adsorption and diffusion in ordered crystalline microporous materials. Physical Chemistry Chemical Physics, 19(31), 20320-20337. https://doi.org/10.1039/c7cp04101b[details]
Krishna, R., & van Baten, J. M. (2017). Screening metal-organic frameworks for separation of pentane isomers. Physical Chemistry Chemical Physics, 19(12), 8380-8387. https://doi.org/10.1039/c7cp00586e[details]
Krishna, R., Baur, R., & van Baten, J. M. (2017). Highlighting diffusional coupling effects in zeolite catalyzed reactions by combining the Maxwell-Stefan and Langmuir-Hinshelwood formulations. Reaction Chemistry & Engineering, 2(3), 324-336. https://doi.org/10.1039/c7re00001d[details]
Li, B., Cui, X., O'Nolan, D., Wen, H-M., Jiang, M., Krishna, R., Wu, H., Lin, R-B., Chen, Y-S., Yuan, D., Xing, H., Zhou, W., Ren, Q., Qian, G., Zaworotko, M. J., & Chen, B. (2017). An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity. Advanced materials, 29(47), Article 1704210 . Advance online publication. https://doi.org/10.1002/adma.201704210[details]
Wu, H., Yuan, D., Li, B., Krishna, R., Xing, H., Zaworotko, M. J., Zhou, W., Chen, B., Ren, Q., O'Nolan, D., Wen, H.-M., Lin, R.-B., Cui, X., Qian, G., Jiang, M. & Chen, Y.-S. (2017). CCDC 1540994: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1nqjhd
Cui, X., Lin, R.-B., Krishna, R., Yuan, D., Xing, H., Zhou, W., Ren, Q., O'Nolan, D., Jiang, M., Zaworotko, M. J., Chen, B., Li, B., Chen, Y.-S., Wen, H.-M., Wu, H. & Qian, G. (2017). CCDC 1540995: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1nqjjf
Ren, Q., Zaworotko, M. J., Lin, R.-B., Xing, H., Qian, G., Krishna, R., Zhou, W., Chen, B., Li, B., Chen, Y.-S., Cui, X., Jiang, M., Yuan, D., Wen, H.-M., Wu, H. & O'Nolan, D. (2017). CCDC 1541108: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1nqn56
Li, L., Lin, R-B., Krishna, R., Wang, X., Li, B., Wu, H., Li, J., Zhou, W., & Chen, B. (2017). Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metalorganic framework. Journal of Materials Chemistry. A, 5(36), 18984-18988. https://doi.org/10.1039/c7ta05598f[details]
Li, L., Lin, R-B., Krishna, R., Wang, X., Li, B., Wu, H., Li, J., Zhou, W., & Chen, B. (2017). Flexible-Robust Metal-Organic Framework for Efficient Removal of Propyne from Propylene. Journal of the American Chemical Society, 139(23), 7733-7736. https://doi.org/10.1021/jacs.7b04268[details]
Li, L., Wang, X., Li, J., Zhou, W., Krishna, R., Chen, B., Li, B., Wu, H. & Lin, R.-B. (2017). CCDC 1545782: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1nwhyz
Liu, B., Yao, S., Liu, X., Li, X., Krishna, R., Li, G., Huo, Q., & Liu, Y. (2017). Two Analogous Polyhedron-Based MOFs with High Density of Lewis Basic Sites and Open Metal Sites: Significant CO2 Capture and Gas Selectivity Performance. ACS Applied Materials and Interfaces, 9(38), 32820-32828. https://doi.org/10.1021/acsami.7b10795[details]
Yoon, J. W., Lee, J. S., Piburn, G. W., Cho, K. H., Jeon, K., Lim, H., Kim, H., Jun, C., Humphrey, S. M., Krishna, R., & Chang, J. (2017). Highly selective adsorption of p-xylene over other C-8 aromatic hydrocarbons by Co-CUK-1: a combined experimental and theoretical assessment. Dalton Transactions, (46), 16096-16101. https://doi.org/10.1039/c7dt03304d[details]
2016
Bao, Z., Chang, G., Xing, H., Krishna, R., Ren, Q., & Chen, B. (2016). Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures. Energy & Environmental Science, 9(12), 3612-3641. https://doi.org/10.1039/c6ee01886f[details]
Cui, X., Chen, K., Xing, H., Yang, Q., Krishna, R., Bao, Z., Wu, H., Zhou, W., Dong, X., Han, Y., Li, B., Ren, Q., Zaworotko, M. J., & Chen, B. (2016). Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 353(6295), 141-144. https://doi.org/10.1126/science.aaf2458[details]
Feng, X., Zong, Z., Elsaidi, S. K., Jasinski, J. B., Krishna, R., Thallapally, P. K., & Carreon, M. A. (2016). Kr/Xe Separation over a Chabazite Zeolite Membrane. Journal of the American Chemical Society, 138(31), 9791-9794. https://doi.org/10.1021/jacs.6b06515[details]
Foo, M. L., Matsuda, R., Hijikata, Y., Krishna, R., Sato, H., Horike, S., Hori, A., Duan, J., Sato, Y., Kubota, Y., Takata, M., & Kitagawa, S. (2016). An Adsorbate Discriminatory Gate Effect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO2 over C2H2. Journal of the American Chemical Society, 138(9), 3022-3030. https://doi.org/10.1021/jacs.5b10491[details]
Foo, M., Hori, A., Sato, H., Kitagawa, S., Takata, M., Krishna, R., Sato, Y., Hijikata, Y., Duan, J., Kubota, Y., Horike, S. & Matsuda, R. (2016). CCDC 1048123: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc145nfd
Horike, S., Sato, H., Duan, J., Takata, M., Sato, Y., Kitagawa, S., Kubota, Y., Hijikata, Y., Krishna, R., Foo, M., Hori, A. & Matsuda, R. (2016). CCDC 1008213: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc12v402
Krishna, R., Hijikata, Y., Sato, H., Sato, Y., Matsuda, R., Takata, M., Horike, S., Foo, M., Duan, J., Kitagawa, S., Hori, A. & Kubota, Y. (2016). CCDC 1008212: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc12v3z0
Hähnel, T., Kalies, G., Krishna, R., Möllmer, J., Hofmann, J., Kobalz, M., & Krautscheid, H. (2016). Adsorptive separation of C2/C3/C4-hydrocarbons on a flexible Cu-MOF: The influence of temperature, chain length and bonding character. Microporous and Mesoporous Materials, 224, 392-399. https://doi.org/10.1016/j.micromeso.2015.12.056[details]
Karmakar, A., Kumar, A., Chaudhari, A. K., Samanta, P., Desai, A. V., Krishna, R., & Ghosh, S. K. (2016). Bimodal Functionality in a Porous Covalent Triazine Framework by Rational Integration of an Electron-Rich and -Deficient Pore Surface. Chemistry-A European Journal, 22(14), 4931-4937. https://doi.org/10.1002/chem.201600109[details]
Krishna, R. (2016). Highlighting Diffusional Coupling Effects in Ternary Liquid Extraction and Comparisons with Distillation. Industrial & Engineering Chemistry Research, 55(4), 1053-1063. https://doi.org/10.1021/acs.iecr.5b04236[details]
Krishna, R. (2016). Highlighting coupling effects in ionic diffusion. Transactions of the Institution of Chemical Engineers. Part A: Chemical engineering research & design, 114, 1-12. https://doi.org/10.1016/j.cherd.2016.08.009[details]
Krishna, R. (2016). Investigating the Validity of the Knudsen Diffusivity Prescription for Mesoporous and Macroporous Materials. Industrial & Engineering Chemistry Research, 55(16), 4749-4759. https://doi.org/10.1021/acs.iecr.6b00762[details]
Krishna, R. (2016). Tracing the origins of transient overshoots for binary mixture diffusion in microporous crystalline materials. Physical Chemistry Chemical Physics, 18(23), 15482-15495. https://doi.org/10.1039/c6cp00132g[details]
Krishna, R., & van Baten, J. M. (2016). Describing diffusion in fluid mixtures at elevated pressures by combining the Maxwell-Stefan formulation with an equation of state. Chemical Engineering Science, 153, 174-187. https://doi.org/10.1016/j.ces.2016.07.025[details]
Li, L., Krishna, R., Wang, Y., Yang, J., Wang, X., & Li, J. (2016). Exploiting the gate opening effect in a flexible MOF for selective adsorption of propyne from C1/C2/C3 hydrocarbons. Journal of Materials Chemistry. A, 4(3), 751-755. https://doi.org/10.1039/c5ta09029f[details]
Libo, L., Krishna, R., Wang, Y., Wang, X., Yang, J., & Li, J. (2016). Flexible Metal-Organic Frameworks with Discriminatory Gate Opening Effect for the Separation of Acetylene from Ethylene/Acetylene Mixtures. European Journal of Inorganic Chemistry, (27), 4457-4462. https://doi.org/10.1002/ejic.201600182[details]
Liu, H., He, Y., Jiao, J., Bai, D., Chen, D-L., Krishna, R., & Chen, B. (2016). A Porous Zirconium-Based Metal-Organic Framework with the Potential for the Separation of Butene Isomers. Chemistry-A European Journal, 22(42), 14988-14997. https://doi.org/10.1002/chem.201602892[details]
Zhou, W., Chen, D.-l., Jiao, J., He, Y., Chen, B., Yildirim, T., Krishna, R., Chen, F., Bai, D. & Liu, H. (2016). CCDC 1446516: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1kk6t4
Luo, F., Yan, C., Dang, L., Krishna, R., Zhou, W., Wu, H., Dong, X., Han, Y., Hu, T.-L., O'Keeffe, M., Wang, L., Luo, M., Lin, R.-B., & Chen, B. (2016). UTSA-74: A MOF-74 Isomer with Two Accessible Binding Sites per Metal Center for Highly Selective Gas Separation. Journal of the American Chemical Society, 138(17), 5678-5684. https://doi.org/10.1021/jacs.6b02030[details]
Zhou, W., Lin, R.-B., Dong, X., Hu, T.-L., Chen, B., Han, Y., Wu, H., Dang, L., Wang, L., Yan, C., O'Keeffe, M., Krishna, R., Luo, M. & Luo, F. (2016). CCDC 1046719: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc14464m
Dong, X., Han, Y., Wang, L., Chen, B., Krishna, R., Dang, L., Luo, M., Lin, R.-B., Yan, C., Zhou, W., Wu, H., Luo, F., Hu, T.-L. & O'Keeffe, M. (2016). CCDC 1046718: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc14463l
Krishna, R., Hu, T.-L., Wu, H., Zhou, W., Dong, X., O'Keeffe, M., Luo, F., Luo, M., Wang, L., Han, Y., Lin, R.-B., Chen, B., Yan, C. & Dang, L. (2016). CCDC 1046717: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc14462k
Mukherjee, S., Manna, B., Desai, A. V., Yin, Y., Krishna, R., Babarao, R., & Ghosh, S. K. (2016). Harnessing Lewis acidic open metal sites of metal-organic frameworks: the foremost route to achieve highly selective benzene sorption over cyclohexane. Chemical Communications, 52(53), 8215-8218. https://doi.org/10.1039/c6cc03015g[details]
Plonka, A. M., Chen, X., Wang, H., Krishna, R., Dong, X., Banerjee, D., Woerner, W. R., Han, Y., Li, J., & Parise, J. B. (2016). Light Hydrocarbon Adsorption Mechanisms in Two Calcium-Based Microporous Metal Organic Frameworks. Chemistry of Materials, 28(6), 1636-1646. https://doi.org/10.1021/acs.chemmater.5b03792[details]
Krishna, R., Banerjee, D., Plonka, A. M., Han, Y., Woerner, W. R., Parise, J. B., Chen, X., Wang, H., Li, J. & Dong, X. (2016). CCDC 1420585: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jp7bs
Han, Y., Banerjee, D., Dong, X., Wang, H., Krishna, R., Li, J., Parise, J. B., Plonka, A. M., Woerner, W. R. & Chen, X. (2016). CCDC 1420584: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jp79r
Krishna, R., Wang, H., Dong, X., Han, Y., Chen, X., Woerner, W. R., Parise, J. B., Plonka, A. M., Banerjee, D. & Li, J. (2016). CCDC 1420583: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jp78q
Li, J., Dong, X., Banerjee, D., Woerner, W. R., Parise, J. B., Plonka, A. M., Wang, H., Han, Y., Chen, X. & Krishna, R. (2016). CCDC 1420582: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jp77p
Krishna, R., Li, J., Dong, X., Woerner, W. R., Banerjee, D., Han, Y., Plonka, A. M., Wang, H., Parise, J. B. & Chen, X. (2016). CCDC 1420581: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jp76n
Woerner, W. R., Wang, H., Chen, X., Parise, J. B., Li, J., Plonka, A. M., Krishna, R., Banerjee, D., Dong, X. & Han, Y. (2016). CCDC 1420580: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jp75m
Wang, J., Krishna, R., Yang, T., & Deng, S. (2016). Nitrogen-rich microporous carbons for highly selective separation of light hydrocarbons. Journal of Materials Chemistry. A, 4(36), 13957-13966. https://doi.org/10.1039/c6ta04939g[details]
Wang, J., Yang, J., Krishna, R., Yang, T., & Deng, S. (2016). A versatile synthesis of metal-organic framework-derived porous carbons for CO2 capture and gas separation. Journal of Materials Chemistry. A, 4(48), 19095-19106. https://doi.org/10.1039/c6ta07330a[details]
Wen, H. M., Li, B., Wang, H., Krishna, R., & Chen, B. (2016). High acetylene/ethylene separation in a microporous zinc(II) metal-organic framework with low binding energy. Chemical Communications, 52(6), 1166-1169. https://doi.org/10.1039/c5cc08210b[details]
Yao, S., Sun, X., Liu, B., Krishna, R., Li, G., Huo, Q., & Liu, Y. (2016). Two heterovalent copper-organic frameworks with multiple secondary building units: high performance for gas adsorption and separation and I2 sorption and release. Journal of Materials Chemistry. A, 4(39), 15081-15087. https://doi.org/10.1039/c6ta05142a[details]
Li, G., Krishna, R., Yao, S., Huo, Q., Liu, B., Sun, X. & Liu, Y. (2016). CCDC 1480154: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1lp6xd
Huo, Q., Sun, X., Li, G., Liu, Y., Yao, S., Krishna, R. & Liu, B. (2016). CCDC 1480153: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1lp6wc
Yao, Z., Zhang, Z., Liu, L., Li, Z., Zhou, W., Zhao, Y., Han, Y., Chen, B., Krishna, R., & Xiang, S. (2016). Extraordinary Separation of Acetylene-Containing Mixtures with Microporous Metal-Organic Frameworks with Open O Donor Sites and Tunable Robustness through Control of the Helical Chain Secondary Building Units. Chemistry-A European Journal, 22(16), 5676-5683. https://doi.org/10.1002/chem.201505107[details]
Chen, B., Zhou, W., Liu, L., Li, Z., Zhang, Z., Han, Y., Krishna, R., Xiang, S., Yao, Z. & Zhao, Y. (2016). CCDC 1421054: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jpqgd
Liu, L., Zhou, W., Xiang, S., Zhang, Z., Zhao, Y., Yao, Z., Li, Z., Krishna, R., Han, Y. & Chen, B. (2016). CCDC 1421052: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jpqdb
Zhang, W., Banerjee, D., Liu, J., Schaef, H. T., Crum, J. V., Fernandez, C. A., Kukkadapu, R. K., Nie, Z., Nune, S. K., Motkuri, R. K., Chapman, K. W., Engelhard, M. H., Hayes, J. C., Silvers, K. L., McGrail, B. P., Krishna, R., Liu, J., & Thallapally, P. K. (2016). Redox-Active Metal-Organic Composites for Highly Selective Oxygen Separation Applications. Advanced materials, 28(18), 3572-+. https://doi.org/10.1002/adma.201600259[details]
2015
Bao, S. J., Krishna, R., He, Y. B., Qin, J. S., Su, Z. M., Li, S. L., Xie, W., Du, D. Y., He, W. W., Zhang, S. R., & Lan, Y. Q. (2015). A stable metal-organic framework with suitable pore sizes and rich uncoordinated nitrogen atoms on the internal surface of micropores for highly efficient CO2 capture. Journal of Materials Chemistry. A, 3(14), 7361-7367. https://doi.org/10.1039/c5ta00256g[details]
Chen, D. L., Shang, H., Zhu, W., & Krishna, R. (2015). Reprint of: Transient breakthroughs of CO2/CH4 and C3H6/C3H8 mixtures in fixed beds packed with Ni-MOF-74. Chemical Engineering Science, 124, 109-117. https://doi.org/10.1016/j.ces.2014.12.001[details]
Chen, D. L., Wang, N., Xu, C., Tu, G., Zhu, W., & Krishna, R. (2015). A combined theoretical and experimental analysis on transient breakthroughs of C2H6/C2H4 in fixed beds packed with ZIF-7. Microporous and Mesoporous Materials, 208, 55-65. https://doi.org/10.1016/j.micromeso.2015.01.019[details]
Chen, X., Plonka, A. M., Banerjee, D., Krishna, R., Schaef, H. T., Ghose, S., Thallapally, P. K., & Parise, J. B. (2015). Direct Observation of Xe and Kr Adsorption in a Xe-Selective Microporous Metal-Organic Framework. Journal of the American Chemical Society, 137(22), 7007-7010. https://doi.org/10.1021/jacs.5b02556[details]
Duan, J., Jin, W., & Krishna, R. (2015). Natural Gas Purification Using a Porous Coordination Polymer with Water and Chemical Stability. Inorganic Chemistry, 54(9), 4279-4284. https://doi.org/10.1021/ic5030058[details]
Gutiérrez-Sevillano, J. J., Calero, S., & Krishna, R. (2015). Selective Adsorption of Water from Mixtures with 1-Alcohols by Exploitation of Molecular Packing Effects in CuBTC. The Journal of Physical Chemistry. C, 119(7), 3658-3666. https://doi.org/10.1021/jp512853w[details]
Gutiérrez-Sevillano, J. J., Calero, S., & Krishna, R. (2015). Separation of benzene from mixtures with water, methanol, ethanol, and acetone: highlighting hydrogen bonding and molecular clustering influences in CuBTC. Physical Chemistry Chemical Physics, 17(31), 20114-20124. https://doi.org/10.1039/c5cp02726h[details]
He, C. T., Jiang, L., Ye, Z. M., Krishna, R., Zhong, Z. S., Liao, P. Q., Xu, J., Ouyang, G., Zhang, J. P., & Chen, X. M. (2015). Exceptional Hydrophobicity of a Large-Pore Metal-Organic Zeolite. Journal of the American Chemical Society, 137(22), 7217-7223. https://doi.org/10.1021/jacs.5b03727[details]
Hu, T. L., Wang, H., Li, B., Krishna, R., Wu, H., Zhou, W., Zhao, Y., Han, Y., Wang, X., Zhu, W., Yao, Z., Xiang, S., & Chen, B. (2015). Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nature Communications, 6, Article 7328. https://doi.org/10.1038/ncomms8328[details]
Huang, N., Krishna, R., & Jiang, D. (2015). Tailor-Made Pore Surface Engineering in Covalent Organic Frameworks: Systematic Functionalization for Performance Screening. Journal of the American Chemical Society, 137(22), 7079-7082. https://doi.org/10.1021/jacs.5b04300[details]
Krishna, R. (2015). Methodologies for evaluation of metal-organic frameworks in separation applications. RSC Advances, 5(64), 52269-52295. https://doi.org/10.1039/c5ra07830j[details]
Krishna, R. (2015). Serpentine diffusion trajectories and the Ouzo effect in partially miscible ternary liquid mixtures. Physical Chemistry Chemical Physics, 17(41), 27428-27436. https://doi.org/10.1039/c5cp04520g[details]
Li, P., He, Y., Zhao, Y., Weng, L., Wang, H., Krishna, R., Wu, H., Zhou, W., O'Keeffe, M., Han, Y., & Chen, B. (2015). A Rod-Packing Microporous Hydrogen-Bonded Organic Framework for Highly Selective Separation of C2H2/CO2 at Room Temperature. Angewandte Chemie, International Edition, 54(2), 574-577. Advance online publication. https://doi.org/10.1002/anie.201410077, https://doi.org/10.1002/ange.201410077[details]
Li, P., He, Y., Zhao, Y., Weng, L., Wang, H., Krishna, R., Wu, H., Zhou, W., O'Keeffe, M., Han, Y., & Chen, B. (2015). A Rod-Packing Microporous Hydrogen-Bonded Organic Framework for Highly Selective Separation of C2H2/CO2 at Room Temperature. Angewandte Chemie, 127(2), 584-587. Advance online publication. https://doi.org/10.1002/ange.201410077, https://doi.org/10.1002/anie.201410077[details]
Manna, B., Mukherjee, S., Desai, A. V., Sharma, S., Krishna, R., & Ghosh, S. K. (2015). A π-electron deficient diaminotriazine functionalized MOF for selective sorption of benzene over cyclohexane. Chemical Communications, 51(84), 15386-15389. https://doi.org/10.1039/c5cc06128h[details]
Motkuri, R. K., Thallapally, P. K., Annapureddy, H. V. R., Dang, L. X., Krishna, R., Nune, S. K., Fernandez, C. A., Liu, J., & McGrail, B. P. (2015). Separation of polar compounds using a flexible metal-organic framework. Chemical Communications, 51(40), 8421-8424. https://doi.org/10.1039/c5cc00113g[details]
Mukherjee, S., Joarder, B., Desai, A. V., Manna, B., Krishna, R., & Ghosh, S. K. (2015). Exploiting Framework Flexibility of a Metal-Organic Framework for Selective Adsorption of Styrene over Ethylbenzene. Inorganic Chemistry, 54(9), 4403-4408. https://doi.org/10.1021/acs.inorgchem.5b00206[details]
Song, C., Hu, J., Ling, Y., Feng, Y., Krishna, R., Chen, D., & He, Y. (2015). The accessibility of nitrogen sites makes a difference in selective CO2 adsorption of a family of isostructural metal-organic frameworks. Journal of Materials Chemistry. A, 3(38), 19417-19426. https://doi.org/10.1039/c5ta05481h[details]
Torres-Knoop, A., Balestra, S. R. G., Krishna, R., Calero, S., & Dubbeldam, D. (2015). Entropic Separations of Mixtures of Aromatics by Selective Face-to-Face Molecular Stacking in One-Dimensional Channels of Metal-Organic Frameworks and Zeolites. ChemPhysChem, 16(3), 532-535. https://doi.org/10.1002/cphc.201402819[details]
Torres-Knoop, A., Heinen, J., Krishna, R., & Dubbeldam, D. (2015). Entropic Separation of Styrene/Ethylbenzene Mixtures by Exploitation of Subtle Differences in Molecular Configurations in Ordered Crystalline Nanoporous Adsorbents. Langmuir, 31(12), 3771-3778. https://doi.org/10.1021/acs.langmuir.5b00363[details]
Wang, J., Krishna, R., Wu, X., Sun, Y., & Deng, S. (2015). Polyfuran-Derived Microporous Carbons for Enhanced Adsorption of CO2 and CH4. Langmuir, 31(36), 9845-9852. https://doi.org/10.1021/acs.langmuir.5b02390[details]
Wang, J., Krishna, R., Yang, J., & Deng, S. (2015). Hydroquinone and quinone-grafted porous carbons for highly selective CO2 capture from flue gases and natural gas upgrading. Environmental Science and Technology, 49(15), 9364-9373. https://doi.org/10.1021/acs.est.5b01652[details]
Wang, J., Krishna, R., Yang, J., Dandamudi, K. P. R., & Deng, S. (2015). Nitrogen-doped porous carbons for highly selective CO2 capture from flue gases and natural gas upgrading. Materials Today Communications, 4, 156-165. https://doi.org/10.1016/j.mtcomm.2015.06.009[details]
Wen, H. M., Li, B., Wang, H., Wu, C., Alfooty, K., Krishna, R., & Chen, B. (2015). A microporous metal-organic framework with rare lvt topology for highly selective C2H2/C2H4 separation at room temperature. Chemical Communications, 51(26), 5610-5613. https://doi.org/10.1039/c4cc09999k[details]
Yoon, J. W., Lee, J. S., Lee, S., Cho, K. H., Hwang, Y. K., Daturi, M., Jun, C. H., Krishna, R., & Chang, J. S. (2015). Adsorptive separation of acetylene from light hydrocarbons by mesoporous iron trimesate MIL-100(Fe). Chemistry - A European Journal, 21(50), 18431-18438. https://doi.org/10.1002/chem.201502893[details]
Yu, H., Wang, X., Xu, C., Chen, D. L., Zhu, W., & Krishna, R. (2015). Utilizing transient breakthroughs for evaluating the potential of Kureha carbon for CO2 capture. Chemical Engineering Journal, 269, 135-147. https://doi.org/10.1016/j.cej.2015.01.091[details]
Zhang, Y., Li, B., Krishna, R., Wu, Z., Ma, D., Shi, Z., Pham, T., Forrest, K., Space, B., & Ma, S. (2015). Highly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexation. Chemical Communications, 51(13), 2714-2717. https://doi.org/10.1039/c4cc09774b[details]
Chen, D. L., Shang, H., Zhu, W. D., & Krishna, R. (2014). Transient breakthroughs of CO2/CH4 and C3H6/C3H8 mixtures in fixed beds packed with Ni-MOF-74. Chemical Engineering Science, 117, 407-415. https://doi.org/10.1016/j.ces.2014.07.008[details]
Chen, D. L., Wang, N., Wang, F. F., Xie, J., Zhong, Y., Zhu, W., Johnson, J. K., & Krishna, R. (2014). Utilizing the Gate-Opening Mechanism in ZIF-7 for Adsorption Discrimination between N2O and CO2. The Journal of Physical Chemistry. C, 118(31), 17831-17837. https://doi.org/10.1021/jp5056733[details]
Colón, Y. J., Krishna, R., & Snurr, R. Q. (2014). Strong influence of the H2 binding energy on the Maxwell-Stefan diffusivity in NU-100, UiO-68, and IRMOF-16. Microporous and Mesoporous Materials, 185, 190-196. https://doi.org/10.1016/j.micromeso.2013.10.031[details]
Duan, J., Higuchi, M., Krishna, R., Kiyonaga, T., Tsutsumi, Y., Sato, Y., Kubota, Y., Takata, M., & Kitagawa, S. (2014). High CO2/N2/O2/CO separation in a chemically robust porous coordination polymer with low binding energy. Chemical Science, 5(2), 660-666. https://doi.org/10.1039/c3sc52177j[details]
Duan, X., He, Y., Cui, Y., Yang, Y., Krishna, R., Chen, B., & Qian, G. (2014). Highly selective separation of small hydrocarbons and carbon dioxide in a metal-organic framework with open copper(II) coordination sites. RSC Advances, 4(44), 23058-23063. https://doi.org/10.1039/c4ra03216k[details]
Duan, X., Zhang, Q., Cai, J., Yang, Y., Cui, Y., He, Y., Wu, C., Krishna, R., Chen, B., & Qian, G. (2014). A new metal-organic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments. Journal of Materials Chemistry. A, 2(8), 2628-2633. https://doi.org/10.1039/c3ta14454b[details]
He, Y., Song, C., Ling, Y., Wu, C., Krishna, R., & Chen, B. (2014). A new MOF-5 homologue for selective separation of methane from C2 hydrocarbons at room temperature. APL Materials, 2, 124102. https://doi.org/10.1063/1.4897351[details]
Jia, J., Wang, L., Sun, F., Jing, X., Bian, Z., Gao, L., Krishna, R., & Zhu, G. (2014). The Adsorption and Simulated Separation of Light Hydrocarbons in Isoreticular Metal-Organic Frameworks Based on Dendritic Ligands with Different Aliphatic Side Chains. Chemistry - A European Journal, 20(29), 9073-9080. https://doi.org/10.1002/chem.201304962[details]
Krishna, R. (2014). Evaluation of procedures for estimation of the isosteric heat of adsorption in microporous materials. Chemical Engineering Science. https://doi.org/10.1016/j.ces.2014.11.007[details]
Krishna, R. (2014). Separating mixtures by exploiting molecular packing effects in microporous materials. Physical Chemistry Chemical Physics, 17(1), 39-59. https://doi.org/10.1039/c4cp03939d[details]
Kärger, J., Binder, T., Chmelik, C., Hibbe, F., Krautscheid, H., Krishna, R., & Weitkamp, J. (2014). Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials. Nature Materials, 13(4), 333-343. https://doi.org/10.1038/NMAT3917[details]
Li, B., Zhang, Y., Krishna, R., Yao, K., Han, Y., Wu, Z., Ma, D., Shi, Z., Pham, T., Space, B., Liu, J., Thallapally, P. K., Liu, J., Chrzanowski, M., & Ma, S. (2014). Introduction of π-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane. Journal of the American Chemical Society, 136(24), 8654-8660. https://doi.org/10.1021/ja502119z[details]
Li, P., He, Y., Arman, H. D., Krishna, R., Wang, H., Weng, L., & Chen, B. (2014). A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective separation of C2H4/C2H6. Chemical Communications, 50(86), 13081-13084. https://doi.org/10.1039/c4cc05506c[details]
Motkuri, R. K., Annapureddy, H. V. R., Vijaykumar, M., Schaef, H. T., Martin, P. F., McGrail, B. P., Dang, L. X., Krishna, R., & Thallapally, P. K. (2014). Fluorocarbon adsorption in hierarchical porous frameworks. Nature Communications, 5, 4368. https://doi.org/10.1038/ncomms5368[details]
Plessius, R., Kromhout, R., Dantas Ramos, A. L., Ferbinteanu, M., Mittelmeijer-Hazeleger, M. C., Krishna, R., Rothenberg, G., & Tanase, S. (2014). Highly Selective Water Adsorption in a Lanthanum Metal-Organic Framework. Chemistry - A European Journal, 20(26), 7922-7925. https://doi.org/10.1002/chem.201403241[details]
Song, C., He, Y., Li, B., Ling, Y., Wang, H., Feng, Y., Krishna, R., & Chen, B. (2014). Enhanced CO2 sorption and selectivity by functionalization of a NbO-type metal-organic framework with polarized benzothiadiazole moieties. Chemical Communications, 50(81), 12105-12108. https://doi.org/10.1039/c4cc05833j[details]
Titze, T., Chmelik, C., Kärger, J., van Baten, J. M., & Krishna, R. (2014). Uncommon Synergy between Adsorption and Diffusion of Hexane Isomer Mixtures in MFI Zeolite Induced by Configurational Entropy Effects. The Journal of Physical Chemistry. C, 118(5), 2660-2665. https://doi.org/10.1021/jp412526t[details]
Yang, J., Krishna, R., & Li, J. (2014). Experiments and simulations on separating a CO2/CH4 mixture using K-KFI at low and high pressures. Microporous and Mesoporous Materials, 184, 21-27. https://doi.org/10.1016/j.micromeso.2013.09.026[details]
2013
He, Y., Furukawa, H., Wu, C., O'Keeffe, M., Krishna, R., & Chen, B. (2013). Low-energy regeneration and high productivity in a lanthanide-hexacarboxylate framework for high-pressure CO2-CH4-H-2 separation. Chemical Communications, 49(60), 6773-6775. https://doi.org/10.1039/c3cc43196g[details]
He, Y., Xiang, S., Zhang, Z., Xiong, S., Wu, C., Zhou, W., Yildirim, T., Krishna, R., & Chen, B. (2013). A microporous metal-organic framework assembled from an aromatic tetracarboxylate for H-2 purification. Journal of Materials Chemistry. A, 1(7), 2543-2551. https://doi.org/10.1039/c2ta01260j[details]
Herm, Z. R., Wiers, B. M., Mason, J. A., van Baten, J. M., Hudson, M. R., Zajdel, P., Brown, C. M., Masciocchi, N., Krishna, R., & Long, J. R. (2013). Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels. Science, 340(6135), 960-964. https://doi.org/10.1126/science.1234071[details]
Kong, G. Q., Han, Z. D., He, Y., Qu, S., Zhou, W., Yildirim, T., Krishna, R., Zou, C., Chen, B., & Wu, C. D. (2013). Expanded Organic Building Units for the Construction of Highly Porous Metal-Organic Frameworks. Chemistry - A European Journal, 19(44), 14886-14894. https://doi.org/10.1002/chem.201302515[details]
Krishna, R., & van Baten, J. M. (2013). Influence of adsorption thermodynamics on guest diffusivities in nanoporous crystalline materials. Physical Chemistry Chemical Physics, 15(21), 7994-8016. https://doi.org/10.1039/c3cp50449b[details]
Krishna, R., & van Baten, J. M. (2013). Investigating the influence of diffusional coupling on mixture permeation across porous membranes. Journal of Membrane Science, 430, 113-128. https://doi.org/10.1016/j.memsci.2012.12.004[details]
Lu, W., Sculley, J. P., Yuan, D., Krishna, R., & Zhou, H. C. (2013). Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer Networks. The Journal of Physical Chemistry. C, 117(8), 4057-4061. https://doi.org/10.1021/jp311512q[details]
Xiong, S., He, Y., Krishna, R., Chen, B., & Wang, Z. (2013). Metal-Organic Framework with Functional Amide Groups for Highly Selective Gas Separation. Crystal Growth & Design, 13(6), 2670-2674. https://doi.org/10.1021/cg4004438[details]
Xu, H., Cai, J., Xiang, S., Zhang, Z., Wu, C., Rao, X., Cui, Y., Yang, Y., Krishna, R., Chen, B., & Qian, G. (2013). A cationic microporous metal-organic framework for highly selective separation of small hydrocarbons at room temperature. Journal of Materials Chemistry. A, 1(34), 9916-9921. https://doi.org/10.1039/c3ta12086d[details]
Bloch, E. D., Queen, W. L., Krishna, R., Zadrozny, J. M., Brown, C. M., & Long, J. R. (2012). Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science, 335(6076), 1606-1610. https://doi.org/10.1126/science.1217544[details]
Chmelik, C., van Baten, J., & Krishna, R. (2012). Hindering effects in diffusion of CO2/CH4 mixtures in ZIF-8 crystals. Journal of Membrane Science, 397-398, 87-91. https://doi.org/10.1016/j.memsci.2012.01.013[details]
Das, M. C., Guo, Q., He, Y., Kim, J., Zhao, C-G., Hong, K., Xiang, S., Zhang, Z., Thomas, K. M., Krishna, R., & Chen, B. (2012). Interplay of metalloligand and organic ligand to tune micropores within isostructural mixed-metal organic frameworks (M'MOFs) for their highly selective separation of chiral and achiral small molecules. Journal of the American Chemical Society, 134(20), 8703-8710. https://doi.org/10.1021/ja302380x[details]
He, Y., Krishna, R., & Chen, B. (2012). Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy & Environmental Science, 5(10), 9107-9120. https://doi.org/10.1039/c2ee22858k[details]
He, Y., Xiang, S., Zhang, Z., Xiong, S., Fronczek, F. R., Krishna, R., O'Keeffe, M., & Chen, B. (2012). A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas. Chemical Communications, 48(88), 10856-10858. https://doi.org/10.1039/c2cc35729a[details]
He, Y., Zhang, Z., Xiang, S., Fronczek, F. R., Krishna, R., & Chen, B. (2012). A microporous metal-organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperature. Chemistry - A European Journal, 18(2), 613-619. https://doi.org/10.1002/chem.201102734[details]
He, Y., Zhang, Z., Xiang, S., Fronczek, F. R., Krishna, R., & Chen, B. (2012). A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chemical Communications, 48(52), 6493-6495. https://doi.org/10.1039/c2cc31792c[details]
He, Y., Zhang, Z., Xiang, S., Wu, H., Fronczek, F. R., Zhou, W., Krishna, R., O'Keeffe, M., & Chen, B. (2012). High separation capacity and selectivity of C2 hydrocarbons over methane within a microporous metal-organic framework at room temperature. Chemistry - A European Journal, 18(7), 1901-1904. https://doi.org/10.1002/chem.201103927[details]
He, Y., Zhou, W., Krishna, R., & Chen, B. (2012). Microporous metal-organic frameworks for storage and separation of small hydrocarbons. Chemical Communications, 48(97), 11813-11831. https://doi.org/10.1039/c2cc35418g[details]
Herm, Z. R., Krishna, R., & Long, J. R. (2012). CO2/CH4, CH4/H-2 and CO2/CH4/H-2 separations at high pressures using Mg-2(dobdc). Microporous and Mesoporous Materials, 151, 481-487. https://doi.org/10.1016/j.micromeso.2011.09.004[details]
Herm, Z. R., Krishna, R., & Long, J. R. (2012). Reprint of: CO2/CH4, CH4/H-2 and CO2/CH4/H-2 separations at high pressures using Mg-2(dobdc). Microporous and Mesoporous Materials, 157, 94-100. https://doi.org/10.1016/j.micromeso.2012.04.042[details]
Krishna, R., & van Baten, J. M. (2012). A comparison of the CO2 capture characteristics of zeolites and metal-organic frameworks. Separation and Purification Technology, 87, 120-126. https://doi.org/10.1016/j.seppur.2011.11.031[details]
Krishna, R., & van Baten, J. M. (2012). Investigating the relative influences of molecular dimensions and binding energies on diffusivities of guest species inside nanoporous crystalline materials. The Journal of Physical Chemistry. C, 116(44), 23556-23568. https://doi.org/10.1021/jp308971w[details]
Krishna, R., & van Baten, J. M. (2012). Investigating the validity of the Bosanquet formula for estimation of diffusivities in mesopores. Chemical Engineering Science, 69(1), 684-688. https://doi.org/10.1016/j.ces.2011.11.026[details]
Wu, H., Yao, K., Zhu, Y., Li, B., Shi, Z., Krishna, R., & Li, J. (2012). Cu-TDPAT, an rht-type dual-functional metal-organic framework offering significant potential for use in H2 and natural gas purification processes operating at high pressures. The Journal of Physical Chemistry. C, 116, 16609-16618. https://doi.org/10.1021/jp3046356[details]
Xiang, S. C., He, Y., Zhang, Z., Wu, H., Zhou, W., Krishna, R., & Chen, B. (2012). Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nature Communications, 3, Article 954. https://doi.org/10.1038/ncomms1956[details]
2011
Bloch, E. D., Murray, L. J., Queen, W. L., Chavan, S., Maximoff, S. N., Bigi, J. P., Krishna, R., Peterson, V. K., Grandjean, F., Smit, B., Long, G. J., Bordiga, S., Brown, C. M., & Long, J. R. (2011). Selective binding of O(2) over N(2) in a redox-active metal-organic framework with open iron(II) coordination sites. Journal of the American Chemical Society, 133(37), 14814-14822. https://doi.org/10.1021/ja205976v[details]
Bux, H., Chmelik, C., Krishna, R., & Caro, J. (2011). Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion. Journal of Membrane Science, 369(1-2), 284-289. https://doi.org/10.1016/j.memsci.2010.12.001[details]
Herm, Z. R., Swisher, J. A., Smit, B., Krishna, R., & Long, J. R. (2011). Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. Journal of the American Chemical Society, 133(15), 5664-5667. https://doi.org/10.1021/ja111411q[details]
Hibbe, F., van Baten, J. M., Krishna, R., Chmelik, C., Weitkamp, J., & Kärger, J. (2011). In-depth study of mass transfer in nanoporous materials by micro-imaging. Chemie Ingenieur Technik, 83(12), 2211-2218. https://doi.org/10.1002/cite.201100167[details]
Krishna, R., & Long, J. R. (2011). Screening metal-organic frameworks by analysis of transient breakthrough of gas mixtures in a fixed bed adsorber. The Journal of Physical Chemistry. C, 115(26), 12941-12950. https://doi.org/10.1021/jp202203c[details]
Krishna, R., & van Baten, J. M. (2011). A molecular dynamics investigation of the diffusion characteristics of cavity-type zeolites with 8-ring windows. Microporous and Mesoporous Materials, 137(1-3), 83-91. https://doi.org/10.1016/j.micromeso.2010.08.026[details]
Krishna, R., & van Baten, J. M. (2011). A molecular dynamics investigation of the unusual concentration dependencies of Fick diffusivities in silica mesopores. Microporous and Mesoporous Materials, 138(1-3), 228-234. https://doi.org/10.1016/j.micromeso.2010.09.032[details]
Krishna, R., & van Baten, J. M. (2011). A rationalization of the Type IV loading dependence in the Kärger-Pfeifer classification of self-diffusivities. Microporous and Mesoporous Materials, 142(2-3), 745-748. https://doi.org/10.1016/j.micromeso.2011.01.002[details]
Krishna, R., & van Baten, J. M. (2011). A simplified procedure for estimation of mixture permeances from unary permeation data. Journal of Membrane Science, 367(1-2), 204-210. https://doi.org/10.1016/j.memsci.2010.10.055[details]
Krishna, R., & van Baten, J. M. (2011). Entropy-based separation of linear chain molecules by exploiting differences in the saturation capacities in cage-type zeolites. Separation and Purification Technology, 76(3), 325-330. https://doi.org/10.1016/j.seppur.2010.10.023[details]
Krishna, R., & van Baten, J. M. (2011). In silico screening of metal-organic frameworks in separation applications. Physical Chemistry Chemical Physics, 13(22), 10593-10616. https://doi.org/10.1039/c1cp20282k[details]
Krishna, R., & van Baten, J. M. (2011). Influence of adsorption on the diffusion selectivity for mixture permeation across mesoporous membranes. Journal of Membrane Science, 369(1-2), 545-549. https://doi.org/10.1016/j.memsci.2010.12.042[details]
Krishna, R., & van Baten, J. M. (2011). Investigating the validity of the Knudsen prescription for diffusivities in a mesoporous covalent organic framework. Industrial & Engineering Chemistry Research, 50(11), 7083-7087. https://doi.org/10.1021/ie200277z[details]
Krishna, R., & van Baten, J. M. (2011). Maxwell-Stefan modeling of slowing-down effects in mixed gas permeation across porous membranes. Journal of Membrane Science, 383(1-2), 289-300. https://doi.org/10.1016/j.memsci.2011.08.067[details]
Lu, W., Yuan, D., Sculley, J., Zhao, D., Krishna, R., & Zhou, H-C. (2011). Sulfonate-grafted porous polymer networks for preferential CO(2) adsorption at low pressure. Journal of the American Chemical Society, 133(45), 18126-18129. https://doi.org/10.1021/ja2087773[details]
Mason, J. A., Sumida, K., Herm, Z. R., Krishna, R., & Long, J. R. (2011). Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy & Environmental Science, 4(8), 3030-3040. https://doi.org/10.1039/c1ee01720a[details]
McDonald, T. M., D'Alessandro, D. M., Krishna, R., & Long, J. R. (2011). Enhanced carbon dioxide capture upon incorporation of N,N '-dimethylethylenediamine in the metal-organic framework CuBTTri. Chemical Science, 2(10), 2022-2028. https://doi.org/10.1039/c1sc00354b[details]
Seehamart, K., Chmelik, C., Krishna, R., & Fritzsche, S. (2011). Molecular dynamics investigation of the self-diffusion of binary mixture diffusion in the metal-organic framework Zn(tbip) accounting for framework flexibility. Microporous and Mesoporous Materials, 143(1), 125-131. https://doi.org/10.1016/j.micromeso.2011.02.018[details]
2010
Bux, H., Chmelik, C., van Baten, J. M., Krishna, R., & Caro, J. (2010). Novel MOF-membrane for molecular sieving predicted by IR-diffusion studies and molecular modeling. Advanced materials, 22(42), 4741-4743. https://doi.org/10.1002/adma.201002066[details]
Dubbeldam, D., Oxford, G. A. E., Krishna, R., Broadbelt, L. J., & Snurr, R. Q. (2010). Distance and angular holonomic constraints in molecular simulations. Journal of Chemical Physics, 133(3), 034114. https://doi.org/10.1063/1.3429610[details]
Getzschmann, J., Senkovska, I., Wallacher, D., Tovar, M., Fairen-Jimenez, D., Düren, T., van Baten, J. M., Krishna, R., & Kaskel, S. (2010). Methane storage mechanism in the metal-organic framework Cu3(btc)2: An in situ neutron diffraction study. Microporous and Mesoporous Materials, 136(1-3), 50-58. https://doi.org/10.1016/j.micromeso.2010.07.020[details]
Hansen, N., Krishna, R., van Baten, J. M., Bell, A. T., & Keil, F. J. (2010). Reactor simulation of benzene ethylation and ethane dehydrogenation catalyzed by ZSM-5: A multiscale approach. Chemical Engineering Science, 65(8), 2472-2480. https://doi.org/10.1016/j.ces.2009.12.028[details]
Krishna, R., & van Baten, J. M. (2010). Comment on "Modeling adsorption and self-diffusion of methane in LTA zeolites: the influence of framework flexibility". The Journal of Physical Chemistry. C, 114(41), 18017-18021. https://doi.org/10.1021/jp107956z[details]
Krishna, R., & van Baten, J. M. (2010). Comment on Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks. Langmuir, 26(4), 2975-2978. https://doi.org/10.1021/la9041875[details]
Krishna, R., & van Baten, J. M. (2010). Describing mixture diffusion in microporous materials under conditions of pore saturation. The Journal of Physical Chemistry. C, 114(26), 11557-11563. https://doi.org/10.1021/jp1036124[details]
Krishna, R., & van Baten, J. M. (2010). Highlighting a variety of unusual characteristics of adsorption and diffusion in microporous materials induced by clustering of guest molecules. Langmuir, 26(11), 8450-8463. https://doi.org/10.1021/la904895y[details]
Krishna, R., & van Baten, J. M. (2010). Highlighting pitfalls in the Maxwell-Stefan modeling of water-alcohol mixture permeation across pervaporation membranes. Journal of Membrane Science, 360(1-2), 476-482. https://doi.org/10.1016/j.memsci.2010.05.049[details]
Krishna, R., & van Baten, J. M. (2010). Hydrogen bonding effects in adsorption of water-alcohol mixtures in zeolites and the consequences for the characteristics of the Maxwell-Stefan diffusivities. Langmuir, 26(13), 10854-10867. https://doi.org/10.1021/la100737c[details]
Krishna, R., & van Baten, J. M. (2010). Investigating cluster formation in adsorption of CO2, CH4, and Ar in zeolites and metal organic frameworks at subcritical temperatures. Langmuir, 26(6), 3981-3992. https://doi.org/10.1021/la9033639[details]
Krishna, R., & van Baten, J. M. (2010). Letter to the editor: Diffusion under pore saturation conditions. AIChE Journal, 56(12), 3288-3289. https://doi.org/10.1002/aic.12424[details]
Krishna, R., & van Baten, J. M. (2010). Mutual slowing-down effects in mixture diffusion in zeolites. The Journal of Physical Chemistry. C, 114(30), 13154-13156. https://doi.org/10.1021/jp105240c[details]
Lu, W., Yuan, D., Zhao, D., Schilling, C. I., Plietzsch, O., Muller, T., Bräse, S., Guenther, J., Blümel, J., Krishna, R., Li, Z., & Zhou, H. C. (2010). Porous polymer networks: synthesis, porosity, and applications in gas storage/separation. Chemistry of Materials, 22(21), 5964-5972. https://doi.org/10.1021/cm1021068[details]
Seehamart, K., Nanok, T., Kärger, J., Chmelik, C., Krishna, R., & Fritzsche, S. (2010). Investigating the reasons for the significant influence of lattice flexibility on self-diffusivity of ethane in Zn(tbip). Microporous and Mesoporous Materials, 130(1-3), 92-96. https://doi.org/10.1016/j.micromeso.2009.10.017[details]
Zhao, D., Yuan, D., Krishna, R., van Baten, J. M., & Zhou, H. C. (2010). Thermosensitive gating effect and selective gas adsorption in a porous coordination nanocage. Chemical Communications, 46(39), 7352-7354. https://doi.org/10.1039/c0cc02771e[details]
2009
Chmelik, C., Heinke, L., van Baten, J. M., & Krishna, R. (2009). Diffusion of n-butane/iso-butane mixtures in silicalite-1 investigated using infrared (IR) microscopy. Microporous and Mesoporous Materials, 125(1-2), 11-16. https://doi.org/10.1016/j.micromeso.2009.02.015[details]
Chmelik, C., Kärger, J., Wiebcke, M., Caro, J., van Baten, J. M., & Krishna, R. (2009). Adsorption and diffusion of alkanes in CuBTC crystals investigated using infra-red microscopy and molecular simulations. Microporous and Mesoporous Materials, 117(1-2), 22-32. https://doi.org/10.1016/j.micromeso.2008.06.003[details]
Dubbeldam, D., Krishna, R., & Snurr, R. Q. (2009). Method for analyzing structural changes of flexible metal-organic frameworks induced by adsorbates. The Journal of Physical Chemistry. C, 113(44), 19317-19327. https://doi.org/10.1021/jp906635f[details]
García-Sánchez, A., Ania, C. O., Parra, J. B., Dubbeldam, D., Vlugt, T. J. H., Krishna, R., & Calero, S. (2009). Transferable force field for carbon dioxide adsorption in zeolites. The Journal of Physical Chemistry. C, 113(20), 8814-8820. https://doi.org/10.1021/jp810871f[details]
Hansen, N., Krishna, R., van Baten, J. M., Bell, A. T., & Keil, F. J. (2009). Analysis of diffusion limitation in the alkylation of benzene over H-ZSM-5 by combining quantum chemical calculations, molecular simulations, and a continuum approach. The Journal of Physical Chemistry. C, 113(1), 235-246. https://doi.org/10.1021/jp8073046[details]
Heinke, L., Tzoulaki, D., Chmelik, C., Hibbe, F., van Baten, J. M., Lim, H., Li, Y., Krishna, R., & Kärger, J. (2009). Assessing guest diffusivities in porous hosts from transient concentration profiles. Physical Review Letters, 102(6), 065901. https://doi.org/10.1103/PhysRevLett.102.065901[details]
Krishna, R. (2009). Describing the diffusion of guest molecules inside porous structures. The Journal of Physical Chemistry. C, 113(46), 19756-19781. https://doi.org/10.1021/jp906879d[details]
Krishna, R., & van Baten, J. M. (2009). A molecular dynamics investigation of a variety of influences of temperature on diffusion in zeolites. Microporous and Mesoporous Materials, 125(1-2), 126-134. https://doi.org/10.1016/j.micromeso.2009.01.015[details]
Krishna, R., & van Baten, J. M. (2009). A molecular simulation study of commensurate-incommensurate adsorption of n-alkanes in cobalt formate frameworks. Molecular Simulation, 35(12-13), 1098-1104. https://doi.org/10.1080/08927020902744672[details]
Krishna, R., & van Baten, J. M. (2009). An investigation of the characteristics of Maxwell-Stefan diffusivities of binary mixtures in silica nanopores. Chemical Engineering Science, 64(5), 870-882. https://doi.org/10.1016/j.ces.2008.10.045[details]
Krishna, R., & van Baten, J. M. (2009). Unified Maxwell-Stefan description of binary mixture diffusion in micro- and meso-porous materials. Chemical Engineering Science, 64(13), 3159-3178. https://doi.org/10.1016/j.ces.2009.03.047[details]
Seehamart, K., Nanok, T., Krishna, R., van Baten, J. M., Remsungnen, T., & Fritzsche, S. (2009). A Molecular Dynamics investigation of the influence of framework flexibility on self-diffusivity of ethane in Zn(tbip) frameworks. Microporous and Mesoporous Materials, 125(1-2), 97-100. https://doi.org/10.1016/j.micromeso.2009.01.020[details]
Tzoulaki, D., Heinke, L., Lim, H., Li, J., Olson, D., Caro, J., Krishna, R., Chmelik, C., & Kärger, J. (2009). Assessing surface permeabilities from transient guest profiles in nanoporous host materials. Angewandte Chemie, International Edition, 48(19), 3525-3528. https://doi.org/10.1002/anie.200804785[details]
2008
Chmelik, C., Heinke, L., Kärger, J., Schmidt, W., Shah, D. B., van Baten, J. M., & Krishna, R. (2008). Inflection in the loading dependence of the Maxwell-Stefan diffusivity of iso-butane in MFI zeolite. Chemical Physics Letters, 459(1-6), 141-145. https://doi.org/10.1016/j.cplett.2008.05.023[details]
Krishna, R., & van Baten, J. M. (2008). Diffusion of hydrocarbon mixtures in MFI zeolite: Influence of intersection blocking. Chemical Engineering Journal, 140(1-3), 614-620. https://doi.org/10.1016/j.cej.2007.11.026[details]
Krishna, R., & van Baten, J. M. (2008). Insights into diffusion of gases in zeolites gained from molecular dynamics simulations. Microporous and Mesoporous Materials, 109(1-3), 91-108. https://doi.org/10.1016/j.micromeso.2007.04.036[details]
Krishna, R., & van Baten, J. M. (2008). Onsager coefficients for binary mixture diffusion in nanopores. Chemical Engineering Science, 63(12), 3120-3140. https://doi.org/10.1016/j.ces.2008.03.017[details]
Krishna, R., & van Baten, J. M. (2008). Segregation effects in adsorption of CO2-containing mixtures and their consequences for separation selectivities in cage-type zeolites. Separation and Purification Technology, 61(3), 414-423. https://doi.org/10.1016/j.seppur.2007.12.003[details]
Krishna, R., & van Baten, J. M. (2008). Separating n-alkane mixtures by exploiting differences in the adsorption capacity within cages of CHA, AFX and ERI zeolites. Separation and Purification Technology, 60(3), 315-320. https://doi.org/10.1016/j.seppur.2007.09.008[details]
Krishna, R., Li, S., van Baten, J. M., Falconer, J. L., & Noble, R. D. (2008). Investigation of slowing-down and speeding-up effects in binary mixture permeation across SAPO-34 and MFI membranes. Separation and Purification Technology, 60(3), 230-236. https://doi.org/10.1016/j.seppur.2007.08.012[details]
Maesen, T. L. M., Krishna, R., van Baten, J. M., Smit, B., Calero, S., & Castillo Sanchez, J. M. (2008). Shape-selective n-alkane hydroconversion at exterior zeolite surfaces. Journal of Catalysis, 256(1), 95-107. https://doi.org/10.1016/j.jcat.2008.03.004[details]
Romanova, E. E., Krause, C. B., Stepanov, A. G., Wilczok, U., Schmidt, W., van Baten, J. M., Krishna, R., Pampel, A., Kärger, J., & Freude, D. (2008). 1H NMR signal broadening in spectra of alkane molecules adsorbed on MFI-type zeolites. Solid State Nuclear Magnetic Resonance, 33(4), 65-71. https://doi.org/10.1016/j.ssnmr.2008.02.007[details]
2015
Banerjee, D., Cairns, A. J., Liu, J., Motkuri, R. K., Nune, S. K., Fernandez, C. A., Krishna, R., Strachan, D. M., & Thallapally, P. K. (2015). Potential of Metal-Organic Frameworks for Separation of Xenon and Krypton. Accounts of Chemical Research, 48(2), 211-219. https://doi.org/10.1021/ar5003126[details]
Long, J. R., Herm, Z. R., Wiers, B. M., & Krishna, R. (2014). Preparation of iron benzenedipyrazolato complex Metal-organic framework for the separation of alkane isomers.
2012
Herm, Z. R., Krishna, R., & Long, J. R. (2012). Metal-organic frameworks as adsorbents for pre-combustion carbon dioxide capture. Preprints of Symposia - American Chemical Society, Division of Fuel Chemistry, 57(1), 273-274.
Chen, Y., Wu, Z., Fan, L., Krishna, R., Huang, H., Wang, Y., Xiong, Q., Li, J. & Li, L. (2024). CCDC 2246837: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2ff0mj
Chen, Y., Wu, Z., Fan, L., Krishna, R., Huang, H., Wang, Y., Xiong, Q., Li, J. & Li, L. (2024). CCDC 2110177: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc28tt75
Yang, R., Wang, Y., Cao, J.-W., Ye, Z.-M., Pham, T., Forrest, K. A., Krishna, R., Chen, H., Li, L., Ling, B.-K., Zhang, T., Gao, T., Jiang, X., Xu, X.-O., Ye, Q.-H. & Chen, K.-J. (2024). CCDC 2176256: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2c1ktt
Wang, L., Zhang, Y., Zhang, P., Liu, X., Xiong, H., Krishna, R., Liu, J., Shuai, H., Wang, P., Zhou, Z., Chen, J., Chen, S., Deng, S. & Wang, J. (2024). CCDC 2236002: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2f1r3c
Chen, C.-X., Pham, T., Tan, K., Krishna, R., Lan, P., Wang, L., Chen, S., Al-Enizi, A. M., Nafady, A., Forrest, K. A., Wang, H., Wang, S., Shan, C., Zhang, L., Su, C.-Y. & Ma, S. (2024). CCDC 2114493: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc28z9g1
Yang, R., Wang, Y., Cao, J.-W., Ye, Z.-M., Pham, T., Forrest, K. A., Krishna, R., Chen, H., Li, L., Ling, B.-K., Zhang, T., Gao, T., Jiang, X., Xu, X.-O., Ye, Q.-H. & Chen, K.-J. (2024). CCDC 2176255: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2c1kss
2023
Jiang, Y., Hu, Y., Luan, B., Wang, L., Krishna, R., Ni, H., Hu, X. & Zhang, Y. (2023). CCDC 2192745: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2clqqf
Nie, H.-X., Yu, M.-H., Gao, Q., Krishna, R. & Chang, Z. (2023). CCDC 2280924: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2gkh6r
Gu, S., Yu, Z., Li, N., Zhang, Q., Zhang, H., Zhang, L., Gong, L., Krishna, R. & Luo, F. (2023). CCDC 2201229: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cwkd7
Yu, X., Huang, Z., Krishna, R., Luo, X. & Liu, Y. (2023). CCDC 2018785: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc25rq3s
Duan, H.-Y., Li, X.-Y., Krishna, R. & He, C. (2023). CCDC 2233223: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dyvgp
Gu, S., Yu, Z., Li, N., Zhang, Q., Zhang, H., Zhang, L., Gong, L., Krishna, R. & Luo, F. (2023). CCDC 2201231: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cwkg9
Gu, S., Yu, Z., Li, N., Zhang, Q., Zhang, H., Zhang, L., Gong, L., Krishna, R. & Luo, F. (2023). CCDC 2201228: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cwkc6
Zhang, H., Fan, Y., Krishna, R., Feng, X., Wang, L. & Luo, F. (2023). CCDC 1952310: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc23jjry
Yang, S.-Q., Krishna, R., Zhou, L., Li, Y.-L., Xing, B., Zhang, Q., Zhang, F.-Y. & Hu, T.-L. (2023). CCDC 2279959: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2gjh2l
Zhou, Y., Chen, C., Krishna, R., Ji, Z., Yuan, D. & Wu, M. (2023). CCDC 2235806: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2f1jst
Gao, M.-Y., Bezrukov, A. A., Song, B.-Q., He, M., Nikkhah, S., Wang, S.-Q., Kumar, N., Darwish, S., Sensharma, D., Deng, C., Li, J., Liu, L., Krishna, R., Vandichel, M., Yang, S. & Zaworotko, M. J. (2023). CCDC 2154469: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2b9x0l
Zhou, Y., Chen, C., Krishna, R., Ji, Z., Yuan, D. & Wu, M. (2023). CCDC 2235816: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2f1k35
Jiang, Y., Hu, Y., Luan, B., Wang, L., Krishna, R., Ni, H., Hu, X. & Zhang, Y. (2023). CCDC 2192747: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2clqsh
Gu, S., Yu, Z., Li, N., Zhang, Q., Zhang, H., Zhang, L., Gong, L., Krishna, R. & Luo, F. (2023). CCDC 2201230: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cwkf8
Li, Y.-Z., Wang, G.-D., Krishna, R., Yin, Q., Zhao, D., Qi, J., Sui, Y. & Hou, L. (2023). CCDC 2233136: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2dyrns
Gao, M.-Y., Bezrukov, A. A., Song, B.-Q., He, M., Nikkhah, S., Wang, S.-Q., Kumar, N., Darwish, S., Sensharma, D., Deng, C., Li, J., Liu, L., Krishna, R., Vandichel, M., Yang, S. & Zaworotko, M. J. (2023). CCDC 2154473: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2b9x4q
Gao, M.-Y., Bezrukov, A. A., Song, B.-Q., He, M., Nikkhah, S., Wang, S.-Q., Kumar, N., Darwish, S., Sensharma, D., Deng, C., Li, J., Liu, L., Krishna, R., Vandichel, M., Yang, S. & Zaworotko, M. J. (2023). CCDC 1973753: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc247vgq
Gao, M.-Y., Bezrukov, A. A., Song, B.-Q., He, M., Nikkhah, S., Wang, S.-Q., Kumar, N., Darwish, S., Sensharma, D., Deng, C., Li, J., Liu, L., Krishna, R., Vandichel, M., Yang, S. & Zaworotko, M. J. (2023). CCDC 2154472: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2b9x3p
Xiong, Y.-Y., Krishna, R., Pham, T., Forrest, K. A., Chen, C.-X., Wei, Z.-W., Jiang, J.-J., Wang, H.-P., Fan, Y., Pan, M. & Su, C.-Y. (2023). CCDC 2114496: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc28z9k4
Yang, S.-Q., Krishna, R., Chen, H., Li, L., Zhou, L., An, Y.-F., Zhang, F.-Y., Zhang, Q., Zhang, Y.-H., Li, W., Hu, T.-L. & Bu, X.-H. (2023). CCDC 2248518: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2fgrvj
Jiang, Y., Hu, Y., Luan, B., Wang, L., Krishna, R., Ni, H., Hu, X. & Zhang, Y. (2023). CCDC 2192744: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2clqpd
Xie, X.-J., Wang, Y., Cao, Q.-Y., Krishna, R., Zeng, H., Lu, W. & Li, D. (2023). CCDC 2259108: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2ftsgj
Gao, M.-Y., Bezrukov, A. A., Song, B.-Q., He, M., Nikkhah, S., Wang, S.-Q., Kumar, N., Darwish, S., Sensharma, D., Deng, C., Li, J., Liu, L., Krishna, R., Vandichel, M., Yang, S. & Zaworotko, M. J. (2023). CCDC 2154471: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2b9x2n
Gu, S., Yu, Z., Li, N., Zhang, Q., Zhang, H., Zhang, L., Gong, L., Krishna, R. & Luo, F. (2023). CCDC 2201226: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cwk94
Xie, X.-J., Wang, Y., Cao, Q.-Y., Krishna, R., Zeng, H., Lu, W. & Li, D. (2023). CCDC 2258075: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2fsq43
Xie, X.-J., Wang, Y., Cao, Q.-Y., Krishna, R., Zeng, H., Lu, W. & Li, D. (2023). CCDC 2286047: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2gqtgh
Gao, M.-Y., Bezrukov, A. A., Song, B.-Q., He, M., Nikkhah, S., Wang, S.-Q., Kumar, N., Darwish, S., Sensharma, D., Deng, C., Li, J., Liu, L., Krishna, R., Vandichel, M., Yang, S. & Zaworotko, M. J. (2023). CCDC 2154470: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2b9x1m
Gu, S., Yu, Z., Li, N., Zhang, Q., Zhang, H., Zhang, L., Gong, L., Krishna, R. & Luo, F. (2023). CCDC 2201227: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cwkb5
Jiang, Y., Hu, Y., Luan, B., Wang, L., Krishna, R., Ni, H., Hu, X. & Zhang, Y. (2023). CCDC 2192746: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2clqrg
2022
Fu, X.-P., Wang, Y.-L., Zhang, X.-F., Krishna, R., He, C.-T., Liu, Q.-Y. & Chen, B. (2022). CCDC 2104434: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc28mtzq
Yang, S.-Q., Zhou, L., He, Y., Krishna, R., Zhang, Q., An, Y.-F., Xing, B., Zhang, Y.-H. & Hu, T.-L. (2022). CCDC 2142649: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc29xlqk
Jiang, Y., Wang, L., Yan, T., Hu, J., Sun, W., Krishna, R., Wang, D., Gu, Z., Liu, D., Cui, X., Xing, H. & Zhang, Y. (2022). CCDC 2190367: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cj806
Wang, G.-D., Krishna, R., Li, Y.-Z., Shi, W.-J., Hou, L., Wang, Y.-Y. & Zhu, Z. (2022). CCDC 2192249: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cl6qx
Yin, M., Zhang, Q., Fan, T., Fan, C., Pu, S., Krishna, R. & Luo, F. (2022). CCDC 2143612: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc29ylsn
Wang, L., Zhang, W., Ding, J., Gong, L., Krishna, R., Ran, Y., Chen, L. & Luo, F. (2022). CCDC 2103477: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc28lv3v
Jiang, Y., Wang, L., Yan, T., Hu, J., Sun, W., Krishna, R., Wang, D., Gu, Z., Liu, D., Cui, X., Xing, H. & Zhang, Y. (2022). CCDC 2190372: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cj85c
Fu, X.-P., Wang, Y.-L., Zhang, X.-F., Krishna, R., He, C.-T., Liu, Q.-Y. & Chen, B. (2022). CCDC 2104433: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc28mtyp
Zhang, H., Zhang, Q., Feng, X., Krishna, R. & Luo, F. (2022). CCDC 2131573: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc29k2fd
Xing, H., Xu, N., Hu, J., Wang, L., Jiang, Y., Krishna, R., Sun, W., Duttwyler, S., Zhang, Y. & Cui, X. (2022). CCDC 2142633: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc29xl61
Hu, T.-L., Zhang, Q., Lian, X., Krishna, R. & Yang, S.-Q. (2022). CCDC 2113559: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc28ybbx
Zhang, W., Jia, W., Qin, J., Chen, L., Ran, Y., Krishna, R., Wang, L. & Luo, F. (2022). CCDC 2166695: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2bqmd3
Krishna, R., Gao, Z., Xu, Z., Yin, W., Gong, L., Wang, L., Tao, Y., Yang, L. & Luo, F. (2022). CCDC 1888690: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21dbh9
Jiang, Y., Wang, L., Yan, T., Hu, J., Sun, W., Krishna, R., Wang, D., Gu, Z., Liu, D., Cui, X., Xing, H. & Zhang, Y. (2022). CCDC 2190368: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cj817
Jiang, Y., Wang, L., Yan, T., Hu, J., Sun, W., Krishna, R., Wang, D., Gu, Z., Liu, D., Cui, X., Xing, H. & Zhang, Y. (2022). CCDC 2190369: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cj828
Jiang, Y., Wang, L., Yan, T., Hu, J., Sun, W., Krishna, R., Wang, D., Gu, Z., Liu, D., Cui, X., Xing, H. & Zhang, Y. (2022). CCDC 2190370: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cj839
Zhang, H., Zhang, Q., Feng, X., Krishna, R. & Luo, F. (2022). CCDC 2131574: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc29k2gf
Jiang, Y., Wang, L., Yan, T., Hu, J., Sun, W., Krishna, R., Wang, D., Gu, Z., Liu, D., Cui, X., Xing, H. & Zhang, Y. (2022). CCDC 2190371: Experimental Crystal Structure Determination. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccdc.csd.cc2cj84b
2021
Xu, W., Yin, M., Luo, F., Xiong, X., Feng, X. & Krishna, R. (2021). CCDC 2047694: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc26qsnd
Xu, Z., Zhu, Y., Fan, Y., Luo, F., Krishna, R., Wang, L. & Ding, J. (2021). CCDC 1974917: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc24920k
Krishna, R., Fan, Y., Luo, F., Yin, M. & Feng, X. (2021). CCDC 2032794: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc26790s
Guo, L., Luo, F., Krishna, R., Feng, X. & Gao, Z. (2021). CCDC 2047397: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc26qh2j
Krishna, R., Shi, D., Zhao, D., Kang, C., Zhang, Z., Peh, S., Chai, K. & Wang, Y. (2021). CCDC 2102602: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc28kxwn
Qian, G., Chen, B., Krishna, R., Li, B., Zhang, X., Zhou, W., Li, L., Wu, H., Pei, J. & Wang, J.-X. (2021). CCDC 1971951: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc245zbn
2020
Gao, J., Lin, R.-B., Zhou, W., Krishna, R., Qian, X., Wu, H. & Chen, B. (2020). CCDC 1958797: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23r906
Fan, Y., Wang, L., Luo, F., Krishna, R., Yin, M., Luo, M., Zhang, H. & Feng, X. (2020). CCDC 2033952: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc268hcc
He, X., Ke, T., Ren, Q., Yang, Q., Bao, Z., Zhang, Z., Dincǎ, M., Chen, R., Krishna, R., van Baten, J., Xing, H. & Shen, J. (2020). CCDC 1974868: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc2490fx
Asgari, M., Schouwink, P. A., Krishna, R., Brown, C. M., Semino, R., Queen, W. L., Kochetygov, I., Trukhina, O., Ceriotti, M. & Tarver, J. (2020). CCDC 1893610: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21kg69
van Baten, J., Zhang, Z., Ren, Q., Shen, J., He, X., Chen, R., Krishna, R., Yang, Q., Ke, T., Bao, Z., Dincǎ, M. & Xing, H. (2020). CCDC 1974875: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc2490n4
van Baten, J., Ke, T., He, X., Bao, Z., Xing, H., Ren, Q., Shen, J., Krishna, R., Zhang, Z., Dincǎ, M., Chen, R. & Yang, Q. (2020). CCDC 1974869: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc2490gy
Yang, L., Cui, X., Duttwyler, S., Krishna, R., Hu, J., Zhang, Y., Wang, L. & Xing, H. (2020). CCDC 1956266: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23nnct
Wang, Y., Krishna, R., Jia, X., Bu, X., Wang, Y., Feng, P., Castillo, H. E., Dang, C., Hong, A. N. & Yang, H. (2020). CCDC 1967760: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241m4z
Trukhina, O., Krishna, R., Queen, W. L., Ceriotti, M., Asgari, M., Brown, C. M., Semino, R., Tarver, J., Kochetygov, I. & Schouwink, P. A. (2020). CCDC 1894884: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21ls9r
Ma, Y., Chen, B., Yonezu, A., Duan, J., Matsuda, R., Liu, S., Liu, G., Jin, W., Dong, Q., Lin, R.-B., Guo, Y., Zhang, X. & Krishna, R. (2020). CCDC 1961037: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23tm8v
Gao, J., Wu, H., Qian, X., Lin, R.-B., Zhou, W., Chen, B. & Krishna, R. (2020). CCDC 1958795: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23r8y3
Cui, H., Wu, H., Lin, R.-B., Zhou, W., Li, Z., Zhang, X., Liang, B., Chen, B., Krishna, R., Xie, Y. & Shi, Y. (2020). CCDC 2038482: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc26f6hc
Wang, Y., Hong, A. N., Jia, X., Krishna, R., Bu, X., Castillo, H. E., Feng, P., Yang, H., Wang, Y. & Dang, C. (2020). CCDC 1967756: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241m0v
Luo, F., Krishna, R., Xiong, J., Chen, B., Xiong, X., Li, L., Xu, Z. & Fan, Y. (2020). CCDC 1969398: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc2439zk
Zhou, W., Lin, R.-B., Cui, H., Liang, B., Wu, H., Chen, B., Li, Z., Krishna, R., Xie, Y., Zhang, X. & Shi, Y. (2020). CCDC 2038483: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc26f6jd
Jia, X., Feng, P., Dang, C., Hong, A. N., Wang, Y., Yang, H., Bu, X., Castillo, H. E., Wang, Y. & Krishna, R. (2020). CCDC 1967755: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241lzs
Feng, P., Hong, A. N., Wang, Y., Wang, Y., Krishna, R., Bu, X., Yang, H., Dang, C., Jia, X. & Castillo, H. E. (2020). CCDC 1967761: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241m50
Zhou, W., Wu, H., Gao, J., Lin, R.-B., Qian, X., Chen, B. & Krishna, R. (2020). CCDC 1958796: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23r8z4
Queen, W. L., Asgari, M., Brown, C. M., Krishna, R., Kochetygov, I., Trukhina, O., Schouwink, P. A., Tarver, J., Ceriotti, M. & Semino, R. (2020). CCDC 1893606: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21kg25
Ke, T., Krishna, R., Dincǎ, M., Zhang, Z., Bao, Z., He, X., Xing, H., Chen, R., van Baten, J., Ren, Q., Shen, J. & Yang, Q. (2020). CCDC 1974873: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc2490l2
Queen, W. L., Tarver, J., Trukhina, O., Semino, R., Ceriotti, M., Asgari, M., Krishna, R., Schouwink, P. A., Kochetygov, I. & Brown, C. M. (2020). CCDC 1893609: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21kg58
Chen, Z.-N., Li, B., Wang, J.-X., Zhang, X., Li, L., Chen, B., Krishna, R., Qian, G., Zhou, W., Wu, H. & Wen, H.-M. (2020). CCDC 1907797: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc2216v6
Ren, Q., Dincǎ, M., He, X., Chen, R., Ke, T., Yang, Q., Xing, H., van Baten, J., Shen, J., Zhang, Z., Bao, Z. & Krishna, R. (2020). CCDC 1974872: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc2490k1
Krishna, R., Yang, H., Dang, C., Wang, Y., Feng, P., Wang, Y., Hong, A. N., Bu, X., Jia, X. & Castillo, H. E. (2020). CCDC 1967757: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241m1w
Feng, P., Wang, Y., Dang, C., Bu, X., Jia, X., Yang, H., Krishna, R., Castillo, H. E., Wang, Y. & Hong, A. N. (2020). CCDC 1967759: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241m3y
Xing, H., Shen, J., Dincǎ, M., Yang, Q., Krishna, R., van Baten, J., He, X., Ren, Q., Chen, R., Zhang, Z., Bao, Z. & Ke, T. (2020). CCDC 1974871: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc2490j0
Krishna, R., Xing, H., Chen, R., Ke, T., Yang, Q., Ren, Q., van Baten, J., Bao, Z., He, X., Zhang, Z., Shen, J. & Dincǎ, M. (2020). CCDC 1974870: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc2490hz
Tarver, J., Brown, C. M., Asgari, M., Schouwink, P. A., Semino, R., Queen, W. L., Krishna, R., Trukhina, O., Ceriotti, M. & Kochetygov, I. (2020). CCDC 1893608: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21kg47
Ke, T., Chen, R., Xing, H., Ren, Q., Yang, Q., Krishna, R., Zhang, Z., Bao, Z., Dincǎ, M., van Baten, J., He, X. & Shen, J. (2020). CCDC 1974874: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc2490m3
Wang, Y., Castillo, H. E., Krishna, R., Hong, A. N., Jia, X., Yang, H., Dang, C., Wang, Y., Feng, P. & Bu, X. (2020). CCDC 1967758: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc241m2x
2019
Franz, D., Yu, M.-H., Bu, X.-H., Li, W., Li, L., Zhou, W., Space, B., Krishna, R., He, C., Hu, T.-L. & Chang, Z. (2019). CCDC 1840016: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrpcs
Wang, W., Liu, Q.-Y., Wang, Y.-L., Liu, R., He, C.-T. & Krishna, R. (2019). CCDC 1891457: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21h6rj
Cheng, P., Wang, T., Li, P., Chen, Y., Space, B., Suepaul, S., Li, L., Hogan, A., Fang, M., Krishna, R., Peng, Y.-L., Chen, B., Li, J., Forrest, K. A., Zhang, Z., He, C., Zaworotko, M. J. & Pham, T. (2019). CCDC 1859293: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc20dr6d
Chen, B., Wang, J., Krishna, R., Ren, Q., Wu, H., Bao, Z., Yang, Y., Zhou, W., Yang, Q., Zhang, Z. & Xing, H. (2019). CCDC 1963023: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23wpb1
Chang, Z., Franz, D., Yu, M.-H., Zhou, W., He, C., Bu, X.-H., Li, W., Li, L., Hu, T.-L., Krishna, R. & Space, B. (2019). CCDC 1840019: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrpgw
Chen, B., Zhang, Z., Zhou, W., Yang, Y., Wang, J., Bao, Z., Xing, H., Krishna, R., Yang, Q., Ren, Q. & Wu, H. (2019). CCDC 1963020: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23wp7y
Lu, W., Huang, Y.-L., Xie, M., Xie, X.-J., Zeng, H., Krishna, R., Li, D., Wan, M.-Y., Bai, J.-P. & Zhao, Y. (2019). CCDC 1890470: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21g5xm
Xing, H., Ren, Q., Yang, Q., Wang, J., Chen, B., Krishna, R., Zhou, W., Yang, Y., Zhang, Z., Wu, H. & Bao, Z. (2019). CCDC 1963021: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23wp8z
Hu, T.-L., He, C., Chang, Z., Krishna, R., Li, L., Space, B., Zhou, W., Yu, M.-H., Franz, D., Bu, X.-H. & Li, W. (2019). CCDC 1840021: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrpjy
Space, B., Zhou, W., Li, L., Yu, M.-H., Bu, X.-H., Franz, D., Hu, T.-L., He, C., Li, W., Krishna, R. & Chang, Z. (2019). CCDC 1840018: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrpfv
Bu, X.-H., Yu, M.-H., Hu, T.-L., Franz, D., Space, B., Li, L., Li, W., He, C., Chang, Z., Zhou, W. & Krishna, R. (2019). CCDC 1840020: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrphx
Xing, H., Yang, Q., Wu, H., Zhang, Z., Yang, Y., Bao, Z., Ren, Q., Zhou, W., Chen, B., Wang, J. & Krishna, R. (2019). CCDC 1963022: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23wp90
Ye, Y., Krishna, R., Zhou, W., Zhang, Z., Xiang, S., Lin, R.-B., Ma, Z., Chen, B. & Lin, Q. (2019). CCDC 1882901: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc2169rb
Franz, D., Hu, T.-L., He, C., Li, L., Krishna, R., Space, B., Zhou, W., Li, W., Bu, X.-H., Chang, Z. & Yu, M.-H. (2019). CCDC 1840017: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrpdt
Xie, X.-J., Bai, J.-P., Lu, W., Krishna, R., Wan, M.-Y., Huang, Y.-L., Zhao, Y., Li, D., Xie, M. & Zeng, H. (2019). CCDC 1890464: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21g5qf
Zhang, Z., Peng, Y.-L., Li, J., Zaworotko, M. J., Hogan, A., Forrest, K. A., Pham, T., Cheng, P., Chen, Y., Fang, M., Li, P., Krishna, R., Li, L., Chen, B., He, C., Suepaul, S., Space, B. & Wang, T. (2019). CCDC 1904988: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc21y97k
Li, D., Lu, W., Zeng, H., Xie, X.-J., Bai, J.-P., Zhao, Y., Xie, M., Wan, M.-Y., Huang, Y.-L. & Krishna, R. (2019). CCDC 1907749: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc22159m
Hu, J., Wen, H.-M., Alsalme, A., Zhou, W., Liao, C., Alothman, Z., Li, L., Chen, B., Wu, H. & Krishna, R. (2019). CCDC 1882294: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc215p53
Zhou, W., Xing, H., Wang, J., Krishna, R., Yang, Q., Yang, Y., Chen, B., Ren, Q., Bao, Z., Zhang, Z. & Wu, H. (2019). CCDC 1963019: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc23wp6x
Bu, X.-H., Hu, T.-L., Li, W., Li, L., Franz, D., Krishna, R., Yu, M.-H., Chang, Z., Zhou, W., Space, B. & He, C. (2019). CCDC 1840022: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1zrpkz
Hu, J., Zhou, W., Chen, B., Alothman, Z., Wu, H., Wen, H.-M., Krishna, R., Liao, C., Alsalme, A. & Li, L. (2019). CCDC 1881280: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc214mg9
2018
Li, S., He, Y., Xiong, S., Krishna, R., He, M., Wang, Y. & Gao, X. (2018). CCDC 1823336: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1z6b9t
Li, L., Li, J., Chen, B., Li, H., Lin, R.-B., Krishna, R., Xiang, S., Wu, H. & Zhou, W. (2018). CCDC 1817715: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1z0gzf
Zhou, W., Wu, H., Li, J., Li, H., Xiang, S., Krishna, R., Li, L., Chen, B. & Lin, R.-B. (2018). CCDC 1859806: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc20f8rh
Zhou, W., Zhou, H.-L., Krishna, R., Chen, B., Li, S., Wu, H., Li, L., He, C., Lin, R.-B. & Li, J. (2018). CCDC 1855047: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc208b7w
Lin, R.-B., Li, H., Krishna, R., Chen, B., Zhou, W., Wu, H., Li, J., Xiang, S. & Li, L. (2018). CCDC 1859808: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc20f8tk
Lin, R.-B., Wu, H., Li, J., He, C., Li, S., Li, L., Zhou, H.-L., Krishna, R., Zhou, W. & Chen, B. (2018). CCDC 1582384: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1q3ln2
He, M., Xiong, S., Krishna, R., Li, S., Wang, Y., He, Y. & Gao, X. (2018). CCDC 1823337: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1z6bbv
Li, S., Chen, B., Li, L., Zhou, W., Krishna, R., Wu, H., Li, J., Zhou, H.-L., He, C. & Lin, R.-B. (2018). CCDC 1855048: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc208b8x
Li, L., Wu, H., Lin, R.-B., Li, H., Krishna, R., Zhou, W., Xiang, S., Li, J. & Chen, B. (2018). CCDC 1859807: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc20f8sj
Noro, S.-I., Hosono, N., Kitagawa, S., Krishna, R., Duan, J., Li, Q., Kusaka, S., Cheng, F., Lyu, H. & Jin, W. (2017). CCDC 1533267: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1ngh7v
Zhang, Z., Yang, L., Wu, H., Yang, Q., Cui, X., Chen, B., Zhou, W., Xing, H., Krishna, R., Ren, Q. & Bao, Z. (2017). CCDC 1545670: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1nwdb8
Jin, W., Kusaka, S., Duan, J., Krishna, R., Cheng, F., Li, Q., Noro, S.-I., Hosono, N., Kitagawa, S. & Lyu, H. (2017). CCDC 1533269: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1ngh9x
Huo, Q., Liu, B., Liu, X., Krishna, R., Yao, S., Liu, Y., Li, G. & Li, X. (2017). CCDC 1555806: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1p6y94
2016
Woerner, W. R., Wang, H., Chen, X., Parise, J. B., Li, J., Plonka, A. M., Krishna, R., Banerjee, D., Dong, X. & Han, Y. (2016). CCDC 1420580: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jp75m
Krishna, R., Li, J., Dong, X., Woerner, W. R., Banerjee, D., Han, Y., Plonka, A. M., Wang, H., Parise, J. B. & Chen, X. (2016). CCDC 1420581: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jp76n
Horike, S., Sato, H., Duan, J., Takata, M., Sato, Y., Kitagawa, S., Kubota, Y., Hijikata, Y., Krishna, R., Foo, M., Hori, A. & Matsuda, R. (2016). CCDC 1008213: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc12v402
Krishna, R., Hu, T.-L., Wu, H., Zhou, W., Dong, X., O'Keeffe, M., Luo, F., Luo, M., Wang, L., Han, Y., Lin, R.-B., Chen, B., Yan, C. & Dang, L. (2016). CCDC 1046717: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc14462k
Li, J., Dong, X., Banerjee, D., Woerner, W. R., Parise, J. B., Plonka, A. M., Wang, H., Han, Y., Chen, X. & Krishna, R. (2016). CCDC 1420582: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jp77p
Han, Y., Banerjee, D., Dong, X., Wang, H., Krishna, R., Li, J., Parise, J. B., Plonka, A. M., Woerner, W. R. & Chen, X. (2016). CCDC 1420584: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jp79r
Chen, B., Zhou, W., Liu, L., Li, Z., Zhang, Z., Han, Y., Krishna, R., Xiang, S., Yao, Z. & Zhao, Y. (2016). CCDC 1421054: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jpqgd
Krishna, R., Wang, H., Dong, X., Han, Y., Chen, X., Woerner, W. R., Parise, J. B., Plonka, A. M., Banerjee, D. & Li, J. (2016). CCDC 1420583: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jp78q
Zhou, W., Lin, R.-B., Dong, X., Hu, T.-L., Chen, B., Han, Y., Wu, H., Dang, L., Wang, L., Yan, C., O'Keeffe, M., Krishna, R., Luo, M. & Luo, F. (2016). CCDC 1046719: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc14464m
Krishna, R., Hijikata, Y., Sato, H., Sato, Y., Matsuda, R., Takata, M., Horike, S., Foo, M., Duan, J., Kitagawa, S., Hori, A. & Kubota, Y. (2016). CCDC 1008212: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc12v3z0
Zhou, W., Chen, D.-l., Jiao, J., He, Y., Chen, B., Yildirim, T., Krishna, R., Chen, F., Bai, D. & Liu, H. (2016). CCDC 1446516: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1kk6t4
Krishna, R., Banerjee, D., Plonka, A. M., Han, Y., Woerner, W. R., Parise, J. B., Chen, X., Wang, H., Li, J. & Dong, X. (2016). CCDC 1420585: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jp7bs
Li, G., Krishna, R., Yao, S., Huo, Q., Liu, B., Sun, X. & Liu, Y. (2016). CCDC 1480154: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1lp6xd
Huo, Q., Sun, X., Li, G., Liu, Y., Yao, S., Krishna, R. & Liu, B. (2016). CCDC 1480153: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1lp6wc
Liu, L., Zhou, W., Xiang, S., Zhang, Z., Zhao, Y., Yao, Z., Li, Z., Krishna, R., Han, Y. & Chen, B. (2016). CCDC 1421052: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc1jpqdb
Foo, M., Hori, A., Sato, H., Kitagawa, S., Takata, M., Krishna, R., Sato, Y., Hijikata, Y., Duan, J., Kubota, Y., Horike, S. & Matsuda, R. (2016). CCDC 1048123: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc145nfd
Dong, X., Han, Y., Wang, L., Chen, B., Krishna, R., Dang, L., Luo, M., Lin, R.-B., Yan, C., Zhou, W., Wu, H., Luo, F., Hu, T.-L. & O'Keeffe, M. (2016). CCDC 1046718: Experimental Crystal Structure Determination. The Cambridge Structural Database. https://doi.org/10.5517/ccdc.csd.cc14463l
De UvA gebruikt cookies voor het meten, optimaliseren en goed laten functioneren van de website. Ook worden er cookies geplaatst om inhoud van derden te kunnen tonen en voor marketingdoeleinden. Klik op ‘Accepteren’ om akkoord te gaan met het plaatsen van alle cookies. Of kies voor ‘Weigeren’ om alleen functionele en analytische cookies te accepteren. Je kunt je voorkeur op ieder moment wijzigen door op de link ‘Cookie instellingen’ te klikken die je onderaan iedere pagina vindt. Lees ook het UvA Privacy statement.